Modeling and Simulation of Photoelectrochemical Cells

4th Wädenswil Day of Chemistry Solar Energy – Chemical Solutions 21. Juni 2012

Outline

Introduction

- Institute of Computational Physics (ICP)
- PEC Research at the ICP

Photoelectrochemical Cells

- Dye-sensitized Solar Cell
- Photoelectrochemical Water Splitting

Modeling and Simulation of DSCs

- Optical Model
- Electrical Model
- PECSIM Software

Conclusions

The Institute of Computational Physics (ICP)

- Interdisciplinary team of physicists, mathematicians and engineers
- Applied Research at the ICP with focus on numerical modeling and simulation:
 - Electrochemical Cells and Energy Systems
 - Organic Electronics and Photovoltaics
 - Optoelectronic Research Laboratory
 - Multiphysics Software Development
- Spin-off companies:
 - Numerical Modeling GmbH, www.nmtec.ch
 - Fluxim AG, www.fluxim.com
 - Winterthur Instruments AG, www.winterthurinstruments.com

Possible Future Energy Triangle

Courtesy of Dr. Andreas Luzzi

• Research at the ICP on all three sides of the triangle.

Photoelectrochemical Cells (PECs)

Photoelectrochemical Cells

- The dye-sensitized solar cell (DSC)
- The photoelectrochemical cell for water decomposition (*H*₂ production)
- · Conversion of sunlight to chemical energy
- Semiconductor photoanode is nanoporous to enhance light harvesting.
- Semiconductor/Electrolyte interface is the key building block.
- Chemical reactions at this interface are crucial (gain and loss).

Why Modeling and Simulation of PECs?

- Identification and quantification of different loss mechanisms in the energy conversion process
- · Interpretation of measurement data and parameter extraction
- Evaluation and assessment of materials and material combinations for the cell production.
- Prediction of optimal cell design

 \Rightarrow Acceleration of R & D

Outline

Introduction

- Institute of Computational Physics (ICP)
- PEC Research at the ICP

Photoelectrochemical Cells

- Dye-sensitized Solar Cell
- Photoelectrochemical Water Splitting

Modeling and Simulation of DSCs

- Optical Model
- Electrical Model
- PECSIM Software

Conclusions

The Dye-Sensitized Solar Cell (DSC)

- The dye-sensitized solar cell (DSC) belongs to the class of thin film solar cells.
- DSCs achieve the separation of light harvesting (photosensitive dye) and charge carrier transport (nanoporous TiO₂).
- The DSC was developed at EPF Lausanne by M. Grätzel and B. O'Regan in 1991 (Nature 1991; **335**: 7377).
- Conversion efficiencies of \approx 12% have been reached.

The Dye-Sensitized Solar Cell

- (1) A photon is absorbed by the dye.
- (2) The excited electron in the dye is injected into the conduction band of the TiO₂.
- (3) Electrons diffuse to the anode through the network of TiO₂ nanoparticles.
- (4) External circuit.
- (5) At the cathode tri-iodide ions are reduced: I₃⁻ + 2e⁻ → 3I⁻.
- (6) The dye is reduced by iodide ions: $2D^+ + 3I^- \rightarrow 2D + I_3^-$

Photoelectrochemical H₂ Production

- Minimum of 1.23 eV is needed for water splitting.
- Efficiencies of this type of PECs is still quite low (order of percents)
- Competition with PV+electrolysis (efficiency of 10-15 percents).

The Water Splitting Device

- (1) A photon is absorbed by semiconductor photoanode (e.g. hematite).
- (2) The Holes h^+ diffuse to the semiconductor/electrolyte interface where oxygen is produced $4OH^- + 4h^+ \rightarrow 2H_2O + O_2$
- (3) External circuit
- (4) At the metallic cathode hydrogen is produced $4H_2O + 4e^- \rightarrow 2H_2 + 4OH^-$
- (5) *OH*⁻ diffuses from the counter electrode to the photoanode.

Outline

Introduction

- Institute of Computational Physics (ICP)
- PEC Research at the ICP

Photoelectrochemical Cells

- Dye-sensitized Solar Cell
- Photoelectrochemical Water Splitting

Modeling and Simulation of DSCs

- Optical Model
- Electrical Model
- PECSIM Software

Conclusions

The DSC Test Device

- Small test DSC device (area 0.28 cm²).
- Different dye types.
- iodide/tri-iodide based electrolyte in ACN/VN mixture.

- 1 Glass substrate, 3.88 mm
- 2 FTO, 690 nm
- Mixed medium, 8 μm (TiO₂, dye, electrolyte)
- 4 Electrolyte, 16 µm
- 5 Platinized FTO, 360 nm
- 6 Glass substrate, 2.22 mm

Optical Model

Objective: Simulate the spatially resolved electron generation rate profile $g(x, \lambda)$ and the maximum achievable quantum efficiency $QE_{max}(\lambda)$.

- The simulations are performed using a ray tracing algorithm and accounts for multiple internal reflections and absoprtion losses in the cell.
- The optical simulation incorporates coherent (matrix transfer method) and incoherent optics.
- The nanoporous TiO₂ layer is treated as an effective medium.
- The indices of refraction and extinction coefficients of the materials are needed as input.
- The model is validated by R and T measurements on the complete device.
- $g(x, \lambda)$ is input for the electrical model.

Simulation of Reflection and Transmission

- Accurate description of scattering is needed in future.
- Problem: to get accurate optical constants for the materials.

Electrical Model

Objective: Simulate IV characteristic j(V) and the quantum efficiency $QE(\lambda)$.

- The electrochemical potentials (Fermi energy for electrons and redox energies for ions) are solutions of a system of coupled non-linear PDEs.
- The electric model accounts for recombination at the TiO₂/electrolyte interface and transport limitations in the TiO₂ and the electrolyte.
- Trapping to an exponential distribution of localized band gap states is taken into account using the quasi-static approximation.

< □ ▶ < 三 ▶

Basic processes in the electrical model

- Multiple-Trapping (MT) model for diffusion, trapping and recombination.
- only electrons in the conduction band contribute to the diffusion current.
- A: electron transport through extended states.
- B: trapping/detrapping at an exponential distribution of localized band gap states.
- C: direct electron transfer from the conduction band (→ U_{cb}).
- D/F: trapping by and electron transfer from surface band gap states (→ U_t).

Source: Bisquert, J. Phys. Chem B., 108, 7, 2004

Equations of the electrical model

The electrical model is based on continuity equations for electrochemical potentials (e.g. quasi-Fermi energy for electrons in the TiO₂):

Including the PDEs for the electrolyte we obtain:

$$\frac{C_{e}}{e} \frac{\partial E_{Fn}}{\partial t}(t,x) = \frac{\partial}{\partial x} \left[\frac{\sigma_{e}}{e} \frac{\partial E_{Fn}}{\partial x} \right] - eU(E_{Fn}, E_{l_{3}}, E_{l^{-}}) + e\eta G(t,x)$$

$$\frac{C_{l_{3}}}{e} \frac{\partial E_{l_{3}}}{\partial t}(t,x) = \frac{\partial}{\partial x} \left[\frac{\sigma_{l_{3}}}{e} \frac{\partial E_{l_{3}}}{\partial x} \right] + \frac{1}{2} eU(E_{Fn}, E_{l_{3}}, E_{l^{-}}) - \frac{1}{2} e\eta G(t,x)$$

$$\frac{C_{l^{-}}}{e} \frac{\partial E_{l^{-}}}{\partial t}(t,x) = \frac{\partial}{\partial x} \left[\frac{\sigma_{l^{-}}}{e} \frac{\partial E_{l^{-}}}{\partial x} \right] - \frac{3}{2} eU(E_{Fn}, E_{l_{3}}, E_{l^{-}}) + \frac{3}{2} e\eta G(t,x)$$

Simulation of Quantum Efficiency

- The coupled optical and electrical model is validated by QE measurements.
- Comparison of measurement and simulation allows to extract steady state parameters.¹

¹Wenger et al., J. Phys. Chem. C, **2011**, 115 (20), pp 10218–10229

Quantitative Loss Analysis

Quantitative Loss Analysis

PECSIM Software

"PECSIM" = Photo-Electro-Chemical SIMulation software

- PECSIM is a simulation software for the systematic model-based analysis and optimization of dye-sensitized solar cells (DSCs)
- The software supports R&D on dye-sensitized solar cells.
- PECSIM is based on a validaded physical model for DSCs. The model consists of a coupled optical and electrical model.
- The software is equipped with a simple graphical user interface (GUI).
- PECSIM is written in Mathematica language. Either a license of the Mathematica Player Pro or a full license of Mathematica is needed to run the software.

Procedure for DSC Simulation

- Optical modeling (based on ray-tracing and thin-film optics)²: \Rightarrow normalized generation rate $g(\lambda, x)$ $\Rightarrow EQE_{max}(\lambda)$
- Solve the coupled (in general non-linear) system of PDEs for the stationary state.¹
 - \Rightarrow Electrochemical Potentials { $E_{En}^0(x), E_{lo}^0(x), E_{lo}^0(x)$ }
 - \Rightarrow IV-Curve, *EQE*(λ), loss analysis
- **③** Linearize the PDEs around $\{E_{Fn}^0(x), E_{l_3}^0(x), E_{l-}^0(x)\}$ and solve the linear system in Fourier space

 $\Rightarrow \text{ Transfer functions } \{\widehat{\varepsilon}_{Fn}(\omega, x), \widehat{\varepsilon}_{I_3}(\omega, x), \widehat{\varepsilon}_{I^-}(\omega, x)\}\$

From the transfer functions { ĉ_{Fn}(ω, x), ĉ_{I3}(ω, x), ĉ_{I-}(ω, x)} small amplitude transient experiments can be simulated:
 ⇒ EIS, IMVS, IMPS, Photovoltage/Photocurrent decay

²Wenger et al. J. Phys. Chem. C, **2011**, 115 (20), pp 10218–10229

PECSIM Screenshot

Activities Yoracle VM Vir	tualBox	Wed 19:39	() 4)	🐁 星 🔳 🖾 Matthias Schmid
Windows XP (WinXP110910) [Running] - Oracle VM VirtualBox				
Machine View Devices Help				
S Wolfram Mathematica 8.0 - [Math	erial Parameter]		Material Parameter	
Ple Edit Insert Format Cell Graphics Evaluation Palettes Window Help				10
O PECSIM 1.1			Cell 1 Cell 2	
			Add Parameter Set Remove Parameter Set Rename Parameter Set	
File • Parameters • Simulation • Postprocessing • Help •			Parameterset Active	
Fraction Of Absorbed Light				
Quantum Efficiency			Bectrolyte	3
Generation Rate			Diffusion Coefficient Iodide (m^2/s)	Diffusion Coefficient Triodide (m^2/s)
Electron Number Density	I–V Cur	ve	4.×10 ⁻¹⁰	4.×10 ⁻¹⁰
Quasi Fermi Level	Current Density [mA/cm^2]		Initial Iodide Concentration (Mol)	Initial Trilodide Concentration [Mol]
Current Density	12		0.97	0.03
I-V Curve		Cell 1		
Traps	10	Cell 2	Titanium Dioxide	
Current Density Todide	8		Diffusion Length (µm)	Lifetime (ms)
Current Density Thiodide	6		36	1
Iodide Number Density			Band Gap (eV)	T0 [K]
Include number Density	4		3.2	750
	2		Effective DOS Traps [1/m^3]	Donor Concentration TiO2 [1,tm^3]
		Voltage	2.~10 ²⁵	1.×10 ²²
	0.4 0.5 0	.6 0.7 0.8	Effective DOS Conduction Band [14h^3]	Intection Efficiency
	FE [%] I [mA	1 V [mV] n[%]	25.103	0.9
	Coll 1 75.0 12.7	902.0 7.7	2.07.10	
	Cell 2 78.4 11	854.9 7.4	Dye	
		00110 714		
¢			 2907 C101 	
te () 19 19:39				
				🕞 💮 🖂 🖉 🐨 🥅 🕥 🦓 🕅 Right Ctr

Outline

Introduction

- Institute of Computational Physics (ICP)
- PEC Research at the ICP

Photoelectrochemical Cells

- Dye-sensitized Solar Cell
- Photoelectrochemical Water Splitting

Modeling and Simulation of DSCs

- Optical Model
- Electrical Model
- PECSIM Software

Conclusions

Conclusions

- Dye-sensitized solar cells and cells for water photodecomposition are two kinds of photoelectrochemical cells. They harvest light and convert its energy to chemical energy.
- Chemical reactions at the semiconductor/electrolyte interface are crucial for their energy conversion process.
- Photoelectrochemical cells combine optics, nanophysics and electrochemistry.
- Modeling and Simulation of photoelectrochemical cells is an important tool to accelerate research and development.

