Joachim Baumann
Joachim Baumann
ZHAW
School of Engineering
Forschungsschwerpunkt Smart Services and Maintenance
Technikumstrasse 81
8400 Winterthur
Netzwerk
Mitglied in Netzwerken
- MD4SG
- PhD Programme in Data Science
- Digital Society Initiative
- Data Ethics Expert Group
- PhD students in AI Ethics
ORCID digital identifier
Projekte
Publikationen
-
Scantamburlo, Teresa; Baumann, Joachim; Heitz, Christoph,
2024.
On prediction-modelers and decision-makers : why fairness requires more than a fair prediction model.
AI & Society.
Verfügbar unter: https://doi.org/10.1007/s00146-024-01886-3
-
Baumann, Joachim; Loi, Michele,
2023.
Fairness and risk : an ethical argument for a group fairness definition insurers can use.
Philosophy & Technology.
36(45).
Verfügbar unter: https://doi.org/10.1007/s13347-023-00624-9
-
Baumann, Joachim; Sapiezynski, Piotr; Heitz, Christoph; Hannák, Anikó,
2024.
Fairness in online ad delivery [Paper].
In:
Proceedings of the 2024 ACM Conference on Fairness, Accountability, and Transparency.
7th ACM Conference on Fairness, Accountability, and Transparency (FAccT), Rio de Janeiro, Brazil, 3-6 June 2024.
Association for Computing Machinery.
S. 1418-1432.
Verfügbar unter: https://doi.org/10.1145/3630106.3658980
-
Baumann, Joachim; Castelnovo, Alessandro; Cosentini, Andrea; Crupi, Riccardo; Inverardi, Nicole; Regoli, Daniele,
2023.
Bias on demand : investigating bias with a synthetic data generator [Paper].
In:
Proceedings of the Thirty-Second International Joint Conference on Artificial Intelligence.
32nd International Joint Conference on Artificial Intelligence (IJCAI), Macao, S.A.R, 19-25 August 2023.
International Joint Conferences on Artificial Intelligence Organization.
S. 7110-7114.
Verfügbar unter: https://doi.org/10.24963/ijcai.2023/828
-
Baumann, Joachim; Castelnovo, Alessandro; Crupi, Riccardo; Inverardi, Nicole; Regoli, Daniele,
2023.
Bias on demand : a modelling framework that generates synthetic data with bias [Paper].
In:
Proceedings of the 2023 ACM Conference on Fairness, Accountability, and Transparency.
6th ACM Conference on Fairness, Accountability, and Transparency (FAccT), Chicago, USA, 12-15 June 2023.
Association for Computing Machinery.
S. 1002-1013.
Verfügbar unter: https://doi.org/10.1145/3593013.3594058
-
Baumann, Joachim; Hannák, Anikó; Heitz, Christoph,
2022.
Enforcing group fairness in algorithmic decision making : utility maximization under sufficiency [Paper].
In:
Proceedings of the 2022 ACM Conference on Fairness, Accountability, and Transparency.
5th ACM Conference on Fairness, Accountability, and Transparency (FAccT), Seoul, Republic of Korea, 21-24 June 2022.
New York:
Association for Computing Machinery.
S. 2315-2326.
Verfügbar unter: https://doi.org/10.1145/3531146.3534645
-
Baumann, Joachim; Heitz, Christoph,
2022.
Group fairness in prediction-based decision making : from moral assessment to implementation [Paper].
In:
Proceedings 2022 9th Swiss Conference on Data Science (SDS).
9th Swiss Conference on Data Science (SDS), Lucerne, Switzerland, 22-23 June 2022.
IEEE.
S. 19-25.
Verfügbar unter: https://doi.org/10.1109/SDS54800.2022.00011