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Abstract

Hitting the Jackpot: Optimizing Neural Networks with Composite Pruning Strategies

by Urban LUTZ & Alexandre MANAI

Over the past decade, state-of-the-art Deep Learning models have surpassed important bench-
marks across several domains, not least due to the growing numbers of parameters trained.
Training these large models requires large amounts of compute and memory, sparking in-
creased interest in the scientific community in the field of neural network optimization, aiming
to increase the efficiency of such models. Recent work suggests, that within each large model
lies smaller, itself trainable subnetwork, referred to as the "Winning Lottery Ticket" (LT), which
achieves similar performance as the full network. The algorithm to find these subnetworks
however involves training a network to convergence iteratively many times over, thus fur-
ther increasing the resource requirements. A number of algorithms have been described since,
which do not rely on repeated training, but fail to produce Lottery Tickets with a performance
as high as those found during training.
In this thesis, we ask the question of whether multiple state-of-the-art algorithms can be com-
bined to produce better performing Lottery Tickets before training.
We propose two novel methods to combine pruning algorithms: Stacked Scoring, where we ap-
ply multiple pruning algorithms in sequence, and SaW, Scores as Weight initializations, where
we train the model using the pruning score of a model as weights to train on and another algo-
rithm to prune it.
We show that by combining Stacked Scoring with SaW, we are able to outperform to outper-
form the best baseline by 2.03% on our model and task at high sparsities, and reach a perfor-
mance previously reserved for pruning schemes applied during training.
Thereby, our work demonstrates that the limit of finding Lottery Tickets before training has not
yet been reached by the existing algorithms, encouraging future research to validate our results
and further investigate our proposed methods.



Zusammenfassung

Hitting the Jackpot: Optimizing Neural Networks with Composite Pruning Strategies

von Urban LUTZ & Alexandre MANAI

In den letzten zehn Jahren haben moderne Deep-Learning-Modelle wichtige Benchmarks in
verschiedenen Bereichen übertroffen, nicht zuletzt aufgrund der wachsenden Zahl der trainierten
Parameter. Das Training dieser grossen Modelle erfordert grosse Mengen an Rechenleistung
und Speicherplatz, was ein gesteigertes Interesse an der Forschung zur Optimierung neu-
ronaler Netze weckte, um die Effizienz dieser Modelle zu erhöhen. Neue Erkenntnisse deuten
darauf hin, dass innerhalb jedes großen Modells kleinere, selbst trainierbare Teilnetze liegen,
die eine ähnliche Leistung wie das vollständige Netz erreichen. Der Algorithmus zum Auffinden
dieser Teilnetze, die die Autoren als "Lottery Tickets" ("Lotterielose") bezeichnen, erfordert je-
doch, dass ein Model iterativ viele Male bis zur Konvergenz trainiert wird. Seither wurde eine
Reihe von Algorithmen beschrieben, die nicht auf wiederholtes Training angewiesen sind, aber
keine Lotterielose mit einer ebenso hohen Leistung wie beim Training erzeugen.
In dieser Arbeit stellen wir uns die Frage, ob mehrere dieser Algorithmen kombiniert werden
können, um leistungsfähigere Lotterielose vor dem Training zu finden.
Wir schlagen zwei neue Methoden zur Kombination von Pruning-Algorithmen vor: Stacked
Scoring, bei dem wir mehrere Pruning-Algorithmen nacheinander anwenden, und SaW, Scores
as Weight initializations, bei dem wir das Modell trainieren, indem wir den Pruning-Score eines
Modells als Gewichte zum Trainieren und einen anderen Algorithmus zum Pruning verwen-
den.
Wir zeigen, dass wir durch die Kombination von Stacked Scoring mit SaW in der Lage sind,
die beste Baseline bei hoher Sparsity um 2,03% zu übertreffen und eine Leistung zu erreichen,
die bisher iterativen Pruning-Schemata vorbehalten war.
Damit zeigt unsere Arbeit, dass die Performancelimits des Auffindens von Lottery Tickets vor
dem Training von den bestehenden Algorithmen noch nicht erreicht wurde. Dies ermutigt
zukünftige Forschung, unsere Ergebnisse zu validieren und unsere vorgeschlagenen Metho-
den weiter zu untersuchen.
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Chapter 1

Introduction

1.1 Motivation

Over the last decade, the field of Deep Learning (Schmidhuber, 2015) has achieved significant
breakthroughs in fields such as computer vision (Dosovitskiy et al., 2020), game play (Silver
et al., 2017) or natural language processing (Brown et al., 2020). New technologies like Trans-
formers (Vaswani et al., 2017) have been able to raise the bar on a number of benchmarks (Lin
et al., 2021) across different tasks (Devlin et al., 2018; Ruan and Jin, 2022), not least due to their
ability to scale massively (Jumper et al., 2021). For example, GPT-3, a state-of-the-art language
model, contains 175 billion trainable parameters, leading to enormous compute consumption
(Brown et al., 2020). According to OpenAI, 2018, the parameter count of the largest models
trained has grown exponentially with a 3.4 Month doubling period since 2012.

But, in the context of Deep Learning, not all parameters have a significant impact on the per-
formance of the neural network (Allen-Zhu et al., 2018). Once the network is trained, it can be
shown that a large portion of weights can be removed without significantly affecting the per-
formance of the model (LeCun, Denker, et al., 1989), but at the same time, empirical evidence
suggests that it is beneficial for any network to have more parameters available at training
time (Li et al., 2020). For instance, Brutzkus et al., 2017 prove that over-parameterized shallow
neural networks get trained optimally and reach good generalization, meaning how well the
network can classify or forecast unseen data, with Stochastic gradient descent (SGD).

This trade-off between needing superfluous weights for training and the increased compute
requirements coupled with the rapid growth of models over the last decade has led to increased
scientific interest in neural network sparsification (Hoefler et al., 2021).

Sparse neural networks, where parameters have been removed, not only require fewer float-
ing point operations (Hoefler et al., 2021), but can also be represented efficiently in memory,
improving hardware interactions and Cache-/Data movements (Elsen et al., 2019; J. Yu et al.,
2017;Han et al., 2017). The interest in neural network optimization has led to numerous ad-
vancements in this area, which traditionally is part of the field of scientific computing rather
than artificial intelligence (Hoefler et al., 2021).

These advancements have a significant impact on multiple aspects of society. Being able to have
state-of-the-art neural networks that are cheaper to run and deploy will give the opportunity
for each industry to develop Deep Learning based solutions, thus democratizing it. Further-
more, today, the emerging question of data privacy is central (Gruschka et al., 2018), running
compressed models, for instance MobileNets (Howard et al., 2017) directly inside the users’
phones enables the user to keep its personal data private.
Strubell et al., 2019 report that training a common Natural Language Processing (NLP) model
on GPU with fine-tuning and experimentation steps leads to an estimated CO2 consumption
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of over 35 tons compared to average CO2 consumption of a Human in a year which is around
5 tons. Further, reduced power consumption leads to less heat dissipation as well, as shown
by Zhu et al., 2017 who propose a SparseNN that achieves a 10% - 70% compute improvement
while reducing a power by 50%. Thus, optimizing neural networks has a direct impact on the
environment.
Finally, optimizing neural networks reduces the complexity thereof and helps reach a goal of
Explainable AI making solutions understandable and traceable for humans (Linardatos et al.,
2020).

1.2 Background

A key development in the field of neural network optimization was the proposal of an al-
gorithm capable of producing highly sparse yet trainable subnetworks(Frankle and Carbin,
2018), seemingly overcoming the necessity of overparameterization during training (Uber et
al., 2020), leading the authors to hypothesize that such subnetworks, exist for any fully con-
nected network. These subnetworks, in the terms of the metaphor proposed by the authors,
have "won" the "initialisation lottery", and are commonly referred to as "winning lottery tick-
ets". Keeping with this metaphor, the hypothesis about the existence of these Lottery Tickets
(LTs) is referred to as the "Lottery Ticket Hypothesis" (LTH). Frankle and Carbin, 2018 empiri-
cally prove the existence of sparse subnetworks that can be trained from initialisation through
the proposed Iterative Magnitude Pruning (IMP) algorithm, requiring to train the model to con-
vergence many times over. Finding these winning tickets is thus impractical for large datasets
and models, for example Imagenet (Russakovsky et al., 2014) with higher training times.

Following this publication, the Lottery Ticket Hypothesis has been the subject of many follow-
up publications from large research organisations in the field ranging from company-sponsored
efforts at Meta AI (formerly Facebook AI) (Paganini and Forde, 2020) or Uber AI (Uber et al.,
2020) to universities like Stanford University (Tanaka et al., 2020) and ETH Zürich/IST Austria
(Hoefler et al., 2021).
From this research, several algorithms emerged, promising to produce trainable subnetworks
at initialisation without the need for repeated training (Lee et al., 2018; Wang et al., 2020), and,
in some cases, without looking at any data at all (Tanaka et al., 2020). Examples of recently
proposed algorithms include: Single-Shot Network Pruning (SNIP) (Lee et al., 2018), Gradient
Signal Preservation (GraSP) (Wang et al., 2020) and Synaptic Flow Pruning (SynFlow) (Tan and
Le, 2019), among others (Dettmers and Zettlemoyer, 2019).

To this end, different approaches can be applied.
SNIP uses a specific saliency criterion (Mozer and Smolensky, 1989; LeCun, Denker, et al., 1989;
Han, Pool, et al., 2015) which describes connections in the network that are important to the
given task based on the data before training. It is able to prune an non-trained initialized Net-
work in a single iteration to a low ratio of weights remaining while keeping compelling testing
results. Secondly, the GraSP approach (Wang et al., 2020) follows the intuition that an effective
Neural Network preserves a certain Gradient Flow (Hochreiter et al., 2005), optimizing to keep
the same gradient norm before and after pruning. This method demonstrates results that are
competitive with pruning algorithms which prune after training, making it interesting to study
more in depth. Finally, SynFlow is designed to mitigate the issue called layer collapse, which
describes a pruning algorithm deleting all the parameters of one layer, disconnecting the model
and rendering it untrainable.
While all of the above algorithms are able to generate sparse trainable subnetworks, therefore
Lottery Tickets, and do not require repeated training, the resulting networks fail to perform as
well as those found by IMP at high sparsities (Tanaka et al., 2020).
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1.3 Problem Definition

In this thesis, we investigate ways to combine several different state-of-the-art pruning algo-
rithms and empirically benchmark the resulting composite methods on a basic network de-
signed to perform a standardized task. The goal is to find a combination of pruning algorithms,
which can find sparse sub-networks before training that perform better than the current state-
of-the-art. By implementing several distinct ways to combine ideas from different publications,
we aim to answer the question: Can state-of-the-art pruning algorithms be combined to obtain
sparse sub-networks before training exhibiting a higher performance compared to a sub net-
work found by any algorithm by itself?

For reference, the full task proposition can be found in Appendix E.

1.4 Contributions and Limitations

In this thesis, we contribute a comparative study on four state-of-the-art pruning algorithms on
a single model and task, confirming findings from various sources regarding subnetwork per-
formance and weight selection overlap. Further, we conduct an ablation study on the impact
of different pruning schedules to the resulting sub network, again confirming findings made
previously and additionally showing, that not every algorithm benefits equally from a compu-
tationally more expensive pruning schedule. We demonstrate that the sub networks found by
the original algorithm proposed in the Lottery Ticket Hypothesis can be outperformed using
state-of-the-art scoring criteria instead of a magnitude based criterion.
Based on the four selected algorithms, we construct a meta learning model (Maclin and Opitz,
1999) and show that it is possible to learn to score weights for pruning, given the scores of the
four state-of-the-art algorithms.
With Stacked Pruning, we propose a novel way of combining two arbitrary pruning criteria
and demonstrate its ability to produce Lottery Tickets before training.
Further, we introduce the novel idea of using scores obtained by pruning algorithms as weight
initialisations and show that initializing the network this way can have a positive impact on
the performance of the subnetworks obtained from it.
Lastly, we show that the combination of both Stacked Scoring and using scores as weight ini-
tialisations can lead to highly performant Lottery Tickets, outperforming the best algorithm
available by 2.03% on our model and task at a non-trivial sparsity of 0.5% weights remaining
and reaching levels of performance previously only achieved by algorithms pruning during
training.

In the context of this thesis, we are restricted by several limitations. Having a fixed formal time
schedule limited to 16 weeks and encountering resource limitations on the compute cluster, we
decided to focus on one specific model, LeNet (LeCun, Boser, et al., 1989) with a single dataset,
MNIST (LeCun, Cortes, et al., 1999) and evaluate the trained models with three repeated runs
whilst keeping the model Hyperparameters stable across experiments.
With these decisions, the results of our work remain comparable to current research without
the need for large scale computing.

1.5 Outline

The following chapters in this thesis give an answer to our research question. To start, we in-
troduce in "Foundations and Related Work" the most important concepts in the field of neural
network pruning and give an overview on the state-of-the-art pruning methods available to-
day. In the chapter "Methods", we propose three approaches to combine different algorithms:
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A meta learning model, a sequential method we term Stacked Scoring and a novel approach of
using pruning scores as weights. In "Experimental Setup", we describe the environment and
conditions in which we implement the three approaches described. In "Results", we give an
overview on the performance of each of our approaches. Lastly, we summarize our findings in
"Conclusions", contextualize the results and give an outlook on where we see potential future
research.
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Chapter 2

Foundations and Related Work

The field of Compression and Optimization dates back to 1989 (LeCun, Denker, et al., 1989) at
the start of the second AI Winter and gradually picked it up in popularity due to the inflation
in size of Neural Networks (Neyshabur et al., 2019). Thus, different approaches aiming at
reducing the compute and memory overhead generated by these Neural Networks have been
devised.
It is essential to place our thesis in this wide landscape and present, in this chapter, topics and
techniques particularly related to our thesis.

For a complete and in depth overview of the field of Compression and Optimization of Neural
Networks, (Hoefler et al., 2021) provides a comprehensive overview on the foundations as well
as the state-of-the-art.

2.1 Neural Network Compression and Optimization

Deep learning proved itself to be a central Machine Learning technique that yields unparalleled
results in various domains, as outlined in section 1.1. Although they are resource inefficient
and bigger networks expensive to train and memory intensive, it is common practice to build
over-parameterized models. Similar to Data compression where information is encoded in a
smaller representation (e.g. using fewer bits), the field of Deep Learning applies the same idea
to Neural Networks.
The Idea of compressing a neural network for optimization essentially aims to find the most
efficient representation of the network in terms compute and memory but also in performance
(e.g. model accuracy). This can be implemented in very different ways, but it can generally be
categorized in a Constructive and Destructive approach. (Paganini and Forde, 2020)

2.1.1 Approaches to Compression and Optimization

The field of Compression and Optimization incorporates many different techniques optimizing
all aspects of the model, from the architecture and design itself (Elsken et al., 2018; X. He et al.,
2019) down to the bit representation of the weights in memory (Nagel et al., 2021). In this
chapter, we will focus on a small subset of these techniques which depict well the wide range
of possibilities to compress and optimize Neural Networks.

Constructive vs Destructive Compression

On one hand, constructive methods (Paganini and Forde, 2020) deal with building of models
from the ground-up towards a network architecture which is optimized for a specific task and
can be efficiently designed from the beginning. On the other hand, destructive approaches (Pa-
ganini and Forde, 2020) work down from a full Network to a compressed Network by removing
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structures from the network. Human Hand-designed and Automated Neural Network Design
techniques are typical examples of constructive approaches, while Quantization and Pruning
are examples of destructive approaches.

Manual and Automated Neural Network Design

As explained in 2.1.1, constructive approaches build efficient model architectures completely
which can be achieved through Manual Design by selecting criteria known to be efficient for a
certain class of tasks. For example by following architectural design strategies, Iandola et al.,
2016 proposers hand-designed "SqueezeNets" which achieve AlexNet-level (Krizhevsky et al.,
2012) accuracy on ImageNet with 50x fewer parameters. Exhaustively choosing each parame-
ter and transformation is, nevertheless, time-consuming. Therefore, automated approaches are
developed to substantially speed up the development of deep learning models. (Santos et al.,
2019; X. He et al., 2019)
The broad domain of AutoML (X. He et al., 2019) encompasses ideas such Feature Engineering,
Hyperparameter tuning and others to elimiate the need for manual design. From these, au-
tomating the design of network architectures with Neural Architecture Search (NAS) (Elsken
et al., 2018), has the highest impact on the efficiency of the model itself (Hoefler et al., 2021).

FIGURE 2.1: Neural Architecture Search. Depiction of a NAS iteration where
a candidate architecture gets selected from a Search Space thanks to a Search
Strategy then tested the against a Performance estimation strategy which returns

a performance estimate.

Inside a predefined Search Space of Neural Network Architectures (see Figure 2.1), NAS ap-
plies a Search Strategy to select architectures and testing them against a performance estimation
strategy.
NAS designs networks which are on par or outperform hand-designed ones. (Zoph and Le,
2016) For instance, it is used in conjunction with advanced transformation techniques like
model scaling to create, for example, EfficentNets (Tan and Le, 2019). EfficentNets achieve
state-of-the-art accuracy on ImageNet while being 8.4x smaller and 6.1x faster (Tan and Le,
2019).
Through its iterative procedure, NAS is, thus, able to construct Neural Networks capable of
improving memory consumption as well as inference time.

Distillation

The Distillation process consists of transferring the knowledge contained in a large, pre-trained
model to a smaller network. One such example is a Teacher/Student setup, where during the
training of the Student Network, the Teacher Network makes predictions from the training
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data. The predictions generated by the Student and Teacher models are then averaged to-
gether leading a combined loss. Through this process, the Student Network learns from the
pre-trained knowledge of the Teacher model.
By transferring the knowledge from the large network to a small network, Hinton et al., 2015
obtain a model demonstrating a 4.4% increase in accuracy compared to the same size model
trained without a teacher. Therefore, Distillation can be understood as a form of constructive
neural network optimization, as it obtains higher performance with the same number of pa-
rameters.

Quantization

The efficiency issues which Quantization tries to tackle in a destructive manner are memory
requirement and inference time. If one wants to integrate their neural network model into
their edge devices (e.g. phones ), the high computational cost of neural networks needs to be
reduced (Nagel et al., 2021). Quantization is one of the most effective ways of achieving savings
for these issues (Nagel et al., 2021). By reducing the precision of the weights, activation’s and
biases, the network consumes less memory. For example, instead of using a 32-bit float to
represent a parameter in the model a 8-bit integer is taken. But one drawback occurring due to
Quantization is accuracy degradation (Mishra et al., 2017).

Pruning

As a last general strategy, we introduce Pruning which is the topic we will focus on in our
thesis. Pruning (also called Sparsification) is the process of deleting unnecessary individual
parameters or groups of parameters from a neural network. It aims to reduce memory and
compute cost of the network making it more efficient while keeping the models accuracy as
high as possible (Hoefler et al., 2021). Sparsification aims to optimize two functions of Neural
Networks: Inference (or forward pass in training) and Training. Both goals of Sparsification
entail various techniques and schedules which we will introduce in the following chapters.

2.2 Sparsification

In this chapter, we will further elaborate the definition given in 2.1.1 with in depth explanations
of concepts and techniques applied in this domain.

Classical Methods

Classical methods that shaped the modern idea of pruning introduced the measure of impor-
tance of weights or structures by analyzing their impact on the loss function of the network.
They observed the change of the loss when a weight or structure is pruned away and giving a
higher importance to those which when pruned led to the least change in the loss function.
Several methods utilizing this idea are described in literature:

Skeletonization. In Mozer and Smolensky, 1989 each weight w is given an attention strength
value α ∈ [0, 1]. If α = 0, the weight associated to that alpha value becomes irrelevant or
unnecessary and α = 1 signifies a conventional weight. To determine the importance ρ of the
weight i, they calculate the derivative of the loss with respect to αi:

ρ̂i =
∂E
αi

∣∣∣
αi=1

(2.1)

with E the loss function
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The idea of studying the impact of the presence or lack of it of certain weights on the loss
function is central to multitude of state-of-the-art pruning algorithms, for example SNIP which
we will introduce in section 2.2.4.

Optimal Brain Damage. The central idea of LeCun, Denker, et al., 1989 is to estimate the impor-
tance of a weight with a Taylor series approximation of the loss function. Multiple assumptions
for example that off-diagonal elements of the Hessian matrix H, representing a square matrix
of second order derivatives of the loss function with respect to the weights, with elements hi,j
are equal to 0 lead to the adapted loss function:

∂E =
1
2 ∑

i
hiiδw2

i (2.2)

with E the loss function, perturbed weights denoted with δ

After deriving to the 2nd degree the loss function, we get the importance of the weight (also
called saliency) si with:

si =
hiiw2

i
2

(2.3)

The weights with the lowest si get pruned.

In this paper, LeCun, Denker, et al., 1989 develop a pruning algorithm on the base of the effect
of weight wi on the approximated loss function. Additionally, a saliency score is given each
weight which is then used to prune accordingly. These ideas are central to current pruning
algorithms like GraSP, as described in section 2.2.4.

Sparsity relevance

FIGURE 2.2: Visualization of different sparsity levels by name and their corre-
sponding percentage. The upper row of the visualization represents the name of
the different sparsity levels and the lower row the according sparsity percentage.

The sparsity percentage of a Neural Network can be split up in different levels (see Figure
2.2). In the range of a dense model up to a low 30% sparsity, pruning procedures aren’t worth
it, because no gain in speed will be acquired due to overheads in storing sparse structures
and controlling sparse computations.(Hoefler et al., 2021) Nevertheless, today’s state-of-the-
art resides between sparsities of 40% and 99.99% with sparsities between 40% and 95% where
models keep an equivalent accuracy to their dense representation and sparsities between 95%
and 99.99%, on the other hand, producing models which present some accuracy loss. Above
the threshold of 99.99% sparsity is a domain that is tackled by Scientific Computing and isn’t
reached by Deep learning models. (Lin et al., 2020; Hoefler et al., 2021)
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FIGURE 2.3: Typical test error vs. sparsity showing Occam’s hill (network:
ResNet-50 on Top-1 ImageNet) (source: Hoefler et al., 2021)

To that end, Sparsification follows Occam’s hill (see green line in Figure 2.3) (Rasmussen and
Ghahramani, 2000). As stated before, between 0% and 80% sparsity, models keep a compara-
ble accuracy to their dense representation. Occam’s hill, interestingly, depicts an increase in
accuracy in that range which could be explained by the Sparsification "trimming" the model of
its obviously unnecessary weights certainly representing learned noise, an effect comparable
to dropout (Srivastava et al., 2014a) in the domain of ephemeral pruning as described below.
Accuracies stay stable in the range of 80% to 95%, but afterwards the accuracy rapidly worsens.

It is important to keep in mind that memory and computation efficiency depend strongly on
the implementation of the sparse data types. Being out of the scope of our thesis, please refer
to (Pooch and Nieder, 1973) for more information on that subject.
Additionally, the sparsity level a model needs to achieve to see a signficant efficiency increase
depends largely on the neural networks initial architecture. Certain architectures such as Mo-
bileNet V1 (Howard et al., 2017) or EfficientNet-B0 (Tan and Le, 2019) are already built in a
efficient way pruning from such architecture would automatically mean pruning necessary
weights. Meanwhile, architecture such as AlexNet (Krizhevsky et al., 2012) present a low pa-
rameter efficiency (Bianco et al., 2017) and would gain from being pruned to a higher sparsity
level. (Hoefler et al., 2021) defines the hardness-normalized parameter efficiency metric; a mod-
ified parameter efficiency (Bianco et al., 2017) which incorporates the difficulty of the task into
the parameter.

2.2.1 What to prune?

In this part, we explain which elements of a neural network can be pruned away. There are
two overarching principles of pruning: Persistent and Ephemeral Sparsification (Hoefler et al.,
2021).

Structured vs Unstructured Sparsification. We need to make a distinction between structured
and unstructured Sparsification (Neill, 2020; Wang et al., 2019; Zeng and Urtasun, 2018). Un-
structured pruning also called fine-grained looks at single weights (see Figure 2.4 on the right)
and not structures such as neurons (see Figure 2.4 on the left), groups of weights or filters in
convolutional layers which are taken into consideration in unstructured Sparsification.
The motivation of this categorical distinction is the storage impact each has (Neill, 2020). The



Chapter 2. Foundations and Related Work 10

flexibility of unstructured pruning comes with a overhead on memory due to the necessary
storage of each pruned weights index (Bianco et al., 2017). But the flexibility permits a wider
range of pruning actions which enables better results to the expense of slower computations.
(Prechelt, 1996)
Meanwhile, the structure of structured pruning (e.g. weight patterns or neurons) can be rep-
resented in an efficient way in memory reducing the index storage overhead. It, therefore,
enables faster computation at the cost of less flexibility. (Hoefler et al., 2021)

Persistent vs Ephemeral Sparsification

With persistent Sparsification the structure of the network gets changed once and permanently.
Accordingly, it can be labelled as a generalization of Neural Architecture Search as described
in section 2.1.1.
The two main elements that get pruned away by this procedure are Weights and Neurons.
Pruning away a weight (see Figure 2.4 on the right) in a Neural Network entails cutting the
link between two Neurons of subsequent Layers, on the other hand , pruning a whole Neuron
(see Figure 2.4 on the left) means deleting all incoming and outgoing Weights from that Neuron.
Additionally special elements such as filters in convolutional layers or heads in attention layers
can be removed as well.

FIGURE 2.4: Visualization of Weight Sparsification (on the right) and Neuron
Sparsification (on the left). Elements marked in red are the ones being pruned

Ephemeral Sparsification, on the other hand, is applied during training and inference calcula-
tions of single data point independently from the rest.
Elements of Neural Networks which do ephemeral Sparsification are, for example, Activation
functions such as ReLU that set values to zero which are below a certain threshold. Addition-
ally, dropout methods can also be considered as such (Srivastava et al., 2014b).

Both of these types of sparsification can be used independently or simultaneously. Persistent
Sparsification with structured or unstructured pruning affects the forward pass during training
and inference whereas Ephemeral Sparsification can be used during training with for example
Dropout techniques or as well during the forward pass and inference with a specific choice of
activation functions.
The complex nature of persistent pruning compared to ephemeral (Hoefler et al., 2021) leads to
the development of schedules which we will elaborate in the next section.
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2.2.2 When to prune?

Previously we answered the question as to what to prune specifically which elements in the
neural network will be taken away. In this section, we study which schedule these pruning
steps follow.

Schedule steps. Following Figures 2.5, 2.6, 2.7 depict the procedure in which we see when the
pruning happens. The "Initialization" block defines the initialization of the neural network that
will be pruned. In this block any initialization schemes can be utilized (e.g. Random, Kaiming
(K. He et al., 2015b). Secondly, the "Prune" block is where the model gets "scored" meaning that
the weights will be given a score according to a scoring method (see later in 2.2.3). These scores
determine if the weight will be pruned. Finally, the "Train" block simply symbolizes that the
model will get trained at this stage of the schedule.

Layer-wise and global Sparsification. Firstly, the aspect of layer-wise and global Sparsifica-
tion needs to be introduced. During the "Prune" block of the procedure explained above, the
weights of the network get "scored" based on their importance inside of the model according
to a specific scoring method. Based on the scores, the pruning algorithm determines which
weights to prune. Two ways of comparing the scores of the weights present themselves: layer-
wise or global (Dong et al., 2017). In the layer-wise comparison, scores only get compared
to other scores inside the same layer of the neural network compared to the global approach
which compares all scores in the network at once (Ding et al., 2019).
One drawback which occurs in layer-wise sparsification is an Independency issue meaning
that scores appearing as minima in the layer might not be global minima and, thus, taking a
sub-optimal decision (Hong and Han, 2021). Additionally, in layer-wise sparsification smaller
layers get pruned at the same rate as larger layers do which might, intuitively, create bottle-
necks where one layer only consists of a couple of neurons. Similarly, global sparsification
presents the tendency to prune later layers more than earlier layers which can lead to the same
bottleneck issue. (Lee et al., 2019) Furthermore, an issue which could arise with global spar-
sification is "layer-collapse" where all weights in a layer get pruned away making the model
untrainable (seen later in 2.2.4).

The pruning schedules can be divided in three categories: Pruning after training, Pruning Dur-
ing Training and Pruning before Training.

Pruning after training

This commonly used method consists of training a network to convergence and then pruning
it. Pruning in such a schedule enables comparisons with the fully trained dense network as a
baseline. Furthermore, (Janowsky, 1989) introduced the concept of "Fine tuning" (see Figure
2.5) where the pruned model gets retrained to reach a significantly better accuracy.
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FIGURE 2.5: Fine tuning step. Visualization depicts the fine-tuning iteration rep-
resented by the arrow in a after training pruning scheme.

Fine tuning re-trains the pruned model based on the weights achieved during the previous
training, Rewinding, on the other hand, (see Figure 2.6) resets the weights to the values of a
previous training iteration i. And then fine-tunes the model with the same Hyperparameters
than the previous iteration. (Renda et al., 2020) establishes that rewinding techniques outper-
form fine-tuning ones.

FIGURE 2.6: Rewinding step. Visualization depicts the rewinding iteration rep-
resented by the arrow in a after training pruning scheme.

Additionally, this schedule provides the fully trained dense neural network as a baseline that
can be used for testing purposes compared to the following pruning schedules.

Pruning during training

In this approach also called Iterative pruning, a network gets repeatedly trained, pruned and
reset over a certain amount of iterations. As an example the algorithm introduced in the lottery
ticket hypothesis paper (Frankle and Carbin, 2018) named Iterative magnitude pruning utilizes
such an iterative rewinding procedure.
To that end, iterative procedures with fixed pruning methods see an improvement in their
results when pruned during training (Finnoff et al., 1993). Additionally, training a dense model
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fully before hand might lead to overfitting which is not correctable solely with pruning (Hoefler
et al., 2021).

Pruning before training

Finally, we’ll look at the upfront approach that prune the network before training right after
initialization (Lee et al., 2018; Wang et al., 2020) (see Figure 2.7). By pruning so early, this pro-
cedure avoids the expensive train-prune iterations present in the other procedures. Moreover,
Liu et al., 2018 demonstrates that fine-tuning the pruned model with inherited weights is not
better than training it from scratch, thus the resulting pruned architectures are what brings the
benefit. Recent works, additionally, demonstrate that randomly initialized networks can be
pruned before training with close to no loss in test accuracy (Liu et al., 2018).

FIGURE 2.7: Up-front Single Shot step. Visualization depicts the single shot step
represented by the arrow in a before training pruning scheme.

Single-shot vs Multi-shot. Previously explained procedure steps can be ran in a single-shot
manner meaning once or in a multi-shot manner. (Lee et al., 2019; Wang et al., 2020) demon-
strate a drawback of SNIP (Lee et al., 2018), a single-shot procedure we are analyzing in section
2.2.4, that stops the information flow (also called the gradient flow). Verdenius et al., 2020
propose a multi-shot approach applying the SNIP saliency criterion iteratively. It follows the
intuition that a initially irrelevant parameter becomes more important after the last pruning
step. Therefore, by pruning in multiple consecutive steps, this approach gives parameters "an-
other chance". On the other hand, Janowsky, 1989 says that “There is no a priori reason why
their initial values should remain optimal after the pruning process”. In fact, it has been shown
that re-training (finetuning) is essential for well-performing pruning schedules (Mehta, 2019).
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2.2.3 How to prune?

In this section, we explain how weights get pruned. Testing each combination of pruned
weights isn’t feasible because of the exponential number of combinations to try, as well as
because training only one Neural Network fully can cost up to 12 millions dollar (Brown et al.,
2020) and, even for smaller networks, the amount of pruned possibilities emerging from the
count of parameters is immense. Therefore, optimized pruning selection criteria have been
developed.

Firstly, the simplest and least computationally expensive regime is called Data-free. With this
approach, weights get pruned away solely based on a selection criterion without influence of
the data observed or the training specifics. One selection criteria is called "neuron- / weight-
similarity". The scoring mechanism follows the selection criteria and distributes lower scores to
similar weights/neurons and, therefore, they get reduced to a single weight/neuron effectively
keeping only one of both. Srinivas and Babu, 2015 demonstrate that with this method they can
remove up to 85% of the total parameters for an MNIST network and about 35% for AlexNet
while keeping comparable results, but prunes less efficiently for bigger networks. Another
approach consists of pruning away weights which have low magnitude values ∥v∥ meaning
they have a very low impact on the decision of the neural network.

Secondly, we’ll look into a class of pruning methods which is called "Data-aware" approaches.
In these approaches, we observe the sensitivity of the network towards the input data. One
method has been to let the all data run through the model and if one neuron keeps its value
close to zero it’ll be pruned away. This is a simple approach to prune away trivial neurons
in the network (Hoefler et al., 2021). Furthermore, the "input sensitivities" method defines the
variation of two neurons values depending on different input samples. The neurons which
are strongly positively or negatively correlated to certain inputs don’t help the classifcation
and thus are collapsed to one neuron only (Castellano et al., 1997). These methods are more
expressive than data-free approaches. We’ll observe in detail an approach in the next chapter
which uses such an idea.

Finally, the most computationally expensive regime is called "training-aware" because the weights
importance is defined by the impact it has on the loss function of a fully trained network. This
idea has been used in classical methods such as LeCun, Denker, et al., 1989, where they look
at which parameter to prune resulting in the least increase in the second order Taylor approx-
imation of the loss function. This work can be considered as an "optimization" approach to
pruning.
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2.2.4 State-of-the-art Network Pruning

In this part, we present four pruning algorithms in depth that are essential to our thesis. We
took the Lottery Ticket Hypothesis paper (Frankle and Carbin, 2018) as base for our research
and decided to find solutions implementing upfront methods, contrary to Frankle and Carbin,
2018, with the optic to avoid the computationally expensive training-pruning loops. To that
end, we found SNIP (Lee et al., 2018), GraSP (Wang et al., 2020) and Synflow (Tanaka et
al., 2020); three promising state-of-the-art pruning algorithms with especially interesting tech-
niques.

Neural Network Pruning

Neural network pruning can be theoretically describe as entailing:

• a dataset D = {(xi, yi)}n
i=1

• a goal sparsity level κ which defines the number of non-zero weights

• a loss function l(·) for example cross-entropy loss

• a set of parameters θ

• a set of weights w ∈ R|θ|

• a L0 norm || · ||0 describing the number of non-zero elements in a vector

It can, therefore, be written as an optimization problem:

min
w

L(w ; D) = min
w

1
n

n

∑
i=1

l(w ; (xi , yi)) , (2.4)

with ||w||0 ≤ κ

Recent approaches use a saliency methodology which treats the above described optimization
problem as removing unnecessary weights in a neural network. Therefore, adequate selection
criteria need to be determined to find these unnecessary weights.

IMP: Iterative Magnitude Pruning

This algorithm has been introduced in the paper by Frankle and Carbin, 2018 building on the
"Lottery Ticket Hypothesis" which states that each randomly initialized dense neural network
has a subnetwork that when trained in isolation, for at least as many iterations as the original
network, matches the test accuracy of the full-network. This trainable subnetwork is, then, also
called the "Lottery Ticket".
Iterative Magnitude Pruning finds such "Lottery Ticket" in a data-free iterative manner apply-
ing a smallest-magnitude criterion to decide which weights get pruned away. More specifically
these are steps that the algorithm takes:

1. Randomly initializes the neural network f (x, θ), initial parameters θ = θ0

2. Trains the network with Stochastic Gradient Descent (SGD) for i iterations, arriving at
parameters θi

3. Prunes in an unstructured way p% of the parameters in θi based on the smallest-magnitude
criterion |w| ∈ θi, creating a mask m = {0, 1}|θ|

4. Resets the remaining parameters to their initial values θ0
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IMP iterates through steps 2,3 and 4 for n rounds each round pruning p1/n% of the weights. At
the end of the n rounds, a Lottery Ticket f (x; m⊙ θ0) is found.

Eventhough, IMP generates smaller and more accurate LT and its iterative nature makes it
avoid layer collapse (Tanaka et al., 2020), it is computationally expensive because of its training-
pruning iterations.

SNIP: Single-Shot Network Pruning

SNIP (Lee et al., 2018) is a data-aware upfront pruning algorithm deleting redundant connec-
tions in a network before training thanks to a "connection sensitivity" criterion.

Recent works have used the magnitude of the weights (see section 2.2.4) |w| as a saliency cri-
terion which presents a dependency on the scale of the weights and, further, needs significant
pre-training.

SNIP introduces data-aware upfront approach which prunes before training at initialization
avoiding the expensive and time-consuming training-pruning iterations. It is able to prune
without the influence of the weights thus the equation of [2.1] can be adjusted to:

min
c,w

L(c⊙ w ; D) = min
c,w

1
n

n

∑
i=1

l(c⊙ w ; (xi , yi)) , (2.5)

with c ∈ {0, 1}|θ|, ||c||0 ≤ κ

The introduction of c permits to determine the importance of a certain weight in relation to the
loss function. cj describes if the connection j is active (cj = 1) or pruned (cj = 0). (see section
2.2.4) studies the difference in loss when cj is active or pruned while keeping everything else
constant. This difference can be defined by:

∆Lj(w ; D) = L(1⊙ w; D)− L((1− ej)⊙ w; D), (2.6)

with ej the unity vector of j

This way of representation is problematic because ∆j needs to be compute for every j ∈ {1, ..., |θ|}.
Thus the binary constraint on c gets relaxed becoming differentiable. It is now represented as
gj that is equivalent to the rate of change of L by δ steps and can be computed in one pass for
all j at once.

We can now formulate the saliency criterion "connection sensitivity" by taking the magnitude
of gj written as:

sj =
|gj(w; D)|

∑|θ|k=1 |gk(w; D)|
(2.7)

To update cj, we test if it is contained in the top-κ weights.

We can put all these elements together to formulate the SNIP pruning algorithm:

1. Initializes the weights w with a Variance Scaling Initialization (Glorot and Bengio, 2010)

2. Samples a mini-batch of the training data Db

3. Computes the connection sensitivity sj of each weight j (equation 2.7)

4. s̄ = SortDescending(s)
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5. Updates the cj for each weights depending if it belongs to the top-κ or not

6. Follows with a regular training and masking step yielding:

w f = c⊙ w∗ (2.8)

with w∗ the trained weights

GraSP: Gradient Signal Preservation

GraSP works upon the idea of SNIP but proposes another saliency criterion "Gradient Signal
Preservation". "Connection Sensitivity" is deemed by Wang et al., 2020 sub-optimal because the
gradient of each weight could change drastically after the pruning step, hypothetically, due to
interactions between weights. Because SNIP observes weights one by one, it might prune away
a weight that is important to the "flow" of information in the network. For that reason, GraSP
proposes a saliency criterion which keeps the gradient flow, essentially pruning the weights
which when taken away lead to the least decrease in the gradient norm of the network.

Wang et al., 2020 can mathematically define the influence of a gradient norm on the loss func-
tion with the following directional derivative:

∆L(θ) = lim
ϵ→0

L(θ + ϵ∇L(θ))− L(θ)
ϵ

= ∇L(θ)T∇L(θ) (2.9)

Equation 2.9 describes that a large gradient norm indicates that each gradient update creates a
greater loss reduction.

To analyze the change in gradient flow in reaction to a perturbation δ to the weights, emulating
the pruning of those weights, after pruning, Wang et al., 2020 utilize:

S(δ) = ∆L(θ0 + δ)− ∆L(θ0) = 2δT Hg + O(||δ||22) (2.10)

The Hessian matrix Hg depicting the correlation between weights in the network with the in-
fluence of the perturbation δ explains how the pruning of θ0 affects all other weights in the
network.

The GraSP pruning algorithm works in the following way:

1. Samples a mini-batch of the training data Db

2. Computes the Hessian and gradient product as Hg

3. Computes the importance of each weight:

S(−θ0) = −θ0 ⊙ Hg (2.11)

4. Computes κth percentile of S(−θ0) as τ

5. Removes weights larger than threshold τ

6. Trains the network with weights m⊙ θ

SynFlow: Iterative Synaptic Flow Pruning

In Tanaka et al., 2020 IMP, GraSP and SNIP get studied and directly compared to the algorithm
called "Iterative Synaptic Flow Pruning" developed in this paper. The core idea of this paper is
that gradient-based approaches such as SNIP and GraSP inevitably fall short to "layer collapse"
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which happens when all the weights of a layer get pruned making the network untrainable.
Therefore, Tanaka et al., 2020 elaborate an iterative algorithm with positive saliency scoring
respecting a "Maximal Critical Compression" axiom called Synflow avoiding layer collapse
while reaching state-of-the-art results.
Saliency scores are defined as such:

S =
∂RSF

∂θ
⊙ θ (2.12)

They develop a new loss function:

RSF = 1T(
L

∏
l=1
|θ|l||)1 (2.13)

with 1 the all ones vector, L the amount of layers in the network

Equation 2.12 yields positive synaptic saliency scores called Synaptic Flow.

The full algorithm goes as follows:

Initialized mask µ = 1 and Compression ratio ρ

Repeat for k ∈ {1, ..., n} iterations:

1. Mask parameters:
θµ = µ⊙ θ0 (2.14)

2. Evaluate and Compute the Synflow score [Equation 2.12] with θ = θµ

3. Calculate the theshold:
τ = (1− ρ−k/n)percentile ofS (2.15)

4. Update the mask:
µ← (τ < S) (2.16)
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2.3 Further Concepts relevant to our Thesis

Early research on decision trees helped shape the ideas we have today. Popular decision tree
were for example Decision Trees (Quinlan, 1986) and Random Forest Trees (Breiman, 2001).

Decision Trees. They are formed, like the name suggests, in a tree like structure formed of
nodes which represent a condition on an attribute of the data which needs to be tested. On the
leaf nodes of the tree is the classification decision of the model.

The induction of decision trees is one of the oldest and most popular techniques for discrimi-
natory classification models. which has been developed in the machine learning (Utgoff, 1989)
and statistical (Kass, 1980) domains.
Nevertheless, decision trees present disadvantages. They are unstable to small changes in the
data that lead to large changes in the structure of the decision tree. Additionally, data includ-
ing multiple leveled categorical data show bias towards those (H. Deng et al., 2013). Finally,
they are often inaccurate and overfit to the data that’s why we utilize another approach called
Random Forest.

Ensemble learning methods, which include Random Forest, use different learning algorithms
and their predictions to gain a better overall predictions. (Valentini and Masulli, 2002)

Random Forest. Being a ensemble learning method, it can be applied to classification and
regression tasks. In our thesis, we’ll focus on classification therefore the output of the random
forest will be the class chosen by most trees.

Random Forest work on the basis of multiple other trees by collecting their decisions and using
the decision that has been taken the most as the final one.
Random Forests correct the overfitting habit of decision trees. (Breiman, 2001) Additionally,
Random Forests generally outperform Decision trees. (Ali et al., 2012)
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Chapter 3

Methods

The task of obtaining better performing Lottery Tickets from combinations of existing algo-
rithms can be approached in various ways. One strategy would the the analysis of the math-
ematical concepts upon which the algorithms are based and proposing an algorithm which
reuses elements from previous work. Indeed, many sources (Frankle and Carbin, 2018; Lee
et al., 2018; Wang et al., 2020; Tanaka et al., 2020; Sanh et al., 2020) use a theory based ap-
proach successfully. Our research is conducted in the context of applied science and therefore,
we have decided to instead investigate the topic with a focus on empirical experiments. As a
result, we are looking to combine different pruning algorithms in such ways that the original
implementations can be reused.

Collecting empirical evidence on the performance of pruning algorithms is not trivial, as it
involves pruning, training and evaluation of a signification number of networks and therefore
requires a lot of compute and time. As outlined in chapter 1, in the context of this thesis, both
of which are limited. With the restrictions in place, we select to conduct experiments that are
computationally feasible in our setting.
With pruning being mature research field going back decades (LeCun, Denker, et al., 1989),
many things have already been described previously (Hoefler et al., 2021). To still be able to
contribute to the state-of-the-art, we also select experiments which have not been described in
the sources we are aware of.

To further mitigate the issue of resource scarcity, we decided to focus our efforts on pruning
a single model trained to perform a single task. However, results of pruning algorithms have
been shown previously to have difficulty to transfer to a different task or model (Frankle et al.,
2020). With this in mind, we are aware that any findings we observe might not fully generalize
to other models or tasks, yet we believe that such experiments may yield interesting findings
nonetheless. In this sense, we follow the approach taken by Frankle and Carbin, 2018.

3.1 Hypothesis

Research building on the original discoveries made by the authors of the Lottery Ticket Hy-
pothesis (Frankle and Carbin, 2018) found, that different strategies of obtaining a Lottery Ticket
tend to produce partially overlapping subnetworks (Paganini and Forde, 2020). Firstly, this
means that there are many different sparse trainable sub networks and the Iterative Magnitude
Pruning (Frankle and Carbin, 2018) algorithm represents only one of the ways to find one. Sec-
ondly, while the Lottery Tickets are different, there exists a subset of weights present in all of
the algorithms they looked at (Paganini and Forde, 2020). For this subset, there is consensus
between all algorithms about the importance of these weights. This subset of the Lottery Ticket,
to which the authors refer to as the core part of the LT, therefore is the source of any differences
in performance between the different algorithms.
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We hypothesize that an algorithm leveraging all information that led to the differences in the
Lottery Tickets is able to produce Lottery Tickets closer to an ideally performing LT.

If this hypothesis holds, we are be able to measure an increase in performance of the resulting
Lottery Ticket obtained by the combined algorithm on the task compared to a Lottery Ticket at
the same sparsity obtained by any of the baseline algorithms alone.

We conduct a series of experiments to validate this hypothesis, which we describe in the follow-
ing sections. Every experiment implements a different way of combining multiple algorithms.
The first approach is a meta learning model, which learns to predict approximately optimal
score for a weight, given the scores from the four existing algorithms. In a second experiment,
we build an algorithm where one scoring criterion is used to score the weights and then a sec-
ond scoring criterion is applied on the output of the first one, allowing us to sequentially use
two different algorithms in a setup we call Stacked Scoring. Lastly, we build on this experi-
ment and raise the question whether using scores as weight initialisation results in trainable
networks and how this impacts the performance of the Lottery Ticket after pruning.
In the following sections, we give a detailed overview on the motivation and setup of these
experiments.
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3.2 Meta Learning Scores

The first experiment we conduct is based on the idea, that the ideal scores producing an ideally
performing Lottery Ticket could be learnable, based on the observation of many such ideal
subnetworks. In this sense, we are implementing an ensemble learning model (Maclin and
Opitz, 1999) which combines the output of several models, in our case pruning algorithms.
However, as outlined in chapter 2, finding the ideal Lottery Ticket for a given sparsity is not
trivial and therefore, an approximation of the ideal ticket has to be used instead. For this
purpose, we propose to use the best combination of scoring criterion and pruning regime to
generate a ticket in the most informed way possible.
With the target variable defined, several options remain what data the model should operate
on. The two main options are either full networks or individual weights, both of which we are
going to elaborate on in the next sections.

3.2.1 Per-Network Prediction

On one end of the scale, the model takes scores for a full network as an input and generates all
scores to prune the whole network with as an output. The benefits of such model is the vast
amount of information available to the model. By seeing all layers at once, it is theoretically
able to optimize for producing highly connected sub-structures across layers. Further, such
model would not even necessarily need to have the existing pruning scores available, as it may
learn its own and improved scoring based on the weights alone.
One way to implement this model could be the adaption of Hypernetworks (Ha et al., 2016),
which observe many examples of a network training and are, in their original form, able to di-
rectly generate the weights themselves (Zhmoginov et al., 2022). While generating the weights
directly does more than just finding Lottery Tickets as it affects all weights in the network, we
hypothesize, that when observing many Lottery Tickets where weights are masked out and
therefore zero, this approach would lead a Hypernetwork to also produce sparse networks
where a large portion of the weights are zero. It remains an open question how one would
control the ratio of weights to remain in this scenario.
Also a promising approach could be to represent the data as a sequence of layers as done in
previous work (Zhmoginov et al., 2022), for it to be able to cope with different model dimen-
sions.

In the context of pruning, a potential strategy could be to let a Hypernetwork observe Lottery
Tickets train as they are found by an algorithm producing close to ideal Lottery Tickets, for
example IMP.
However, this approach also comes with significant drawbacks. Since a full network and a
corresponding Lottery Ticket represent a single data point, many LTs need to be found first
to produce a dataset large enough to train a model (Sun et al., 2017). In the context of IMP,
this training is particularly compute expensive as many iterations of the network need to be
trained. The compute required is, in the context of this thesis, not available and no dataset
mapping networks to the respective lottery tickets exists to our knowledge.

3.2.2 Per-Weight Prediction

At the other end of the spectrum, it is also possible to have the model learn to predict scores on
a per weight basis. For each weight, the model predicts its likely score based on the scores the
existing algorithms, which run in an upfront schedule, approximating the ideal LT. Implicitly,
we hypothesize, some the context of the weight in the network is encoded in the existing scores
themselves by virtue of the ways they are calculated and therefore available to the model to
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learn from. In the case of data-aware pruning schemes, information about the task is also
encoded in the score.

The benefit of this version is, that training a single network yields as many data points as it has
parameters, generating large amounts data to train a model with.
Also, the pipeline to apply the model once trained is straightforward:

1. Initialize the model

2. Run each algorithm to score the model

3. For each weight: predict the score

4. Apply top k selection on the initial weights

In figure 3.1, we visualize these steps on a single example layer.

FIGURE 3.1: Illustrative visualisation of the meta-learning model. From a weight
matrix, four matrices with intermediate scores are produced (A). These four
scores are the input to our model, which generates a single matrix of final scores
(B). These final scores are the selection criteria that get applied to the weight ma-
trix (C). Of these operations, only (B) runs on a per-weight basis, all others remain

a layer-wise operation.

Due to the advantages in both the volume of data available and the simplicity of the imple-
mentation as described above, we decide to implement this option in this thesis. We measure
the success of this model by whether it outperforms the individual algorithms on the same set
of initial weights. The maximum performance we expect such model to achieve is the perfor-
mance of the algorithm we used as an approximation of the ideal LT for training. While we
do not expect our model to outperform the existing the baseline, it would be possible to do so
without iterative training, saving compute at training time.
A risk with this approach lies in the fact that the approximately ideal LT was found with a
pruning method involving training on a given dataset. Therefore, it can be argued that the
model might learn to produce data and task specific LTs. While we believe this to be a valid
risk and hypothesize that, as the model only has a the context of the scores for an individual
weight, it is also possible that generally applicable patterns are found. If the model performs
well on the same task it was trained on, the model has to be validated by applying it to another
model and task. Therefore, we argue this to still be a valid experiment to pursue.

In the case the model successfully learns to produce Lottery Tickets trainable to a higher ac-
curacy compared to other baselines before training, we would be able to demonstrate that it is
indeed possible to obtain higher performing Lottery Tickets with combinations of algorithms,
and thus prove our hypothesis.
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3.3 Stacked Scoring

While a meta model is a traditional way of learning to score weights for pruning, we also pro-
pose alternative options. In this section, we introduce the idea of what we term Stacked Scor-
ing, where two pruning algorithms are applied sequentially as opposed the parallel evaluation
of scores in the context of the meta model.

3.3.1 Motivation

In the context of weight magnitude based pruning, we observe a close relationship between the
value of the weight and its score. We hypothesize that intuitively, the magnitude of a weight
can be understood to define its contribution to the final result, while the scores obtained from
a pruning algorithm indicate the importance of the weight. When a network is pruned to a
low ratio of weights remaining using these scores of importance, the remaining weights with
a high score have a higher contribution to the result of the pruned network. Therefore, we
hypothesize that while the weight value is the actual contribution, the pruning scores can be
seen the expected contribution of the weight once pruned.

When pruning a network, there are two transformations involved (LeCun, Denker, et al., 1989).
The first one transforms the weight matrix to scores and by applying what we refer to as the
scoring criterion. The second operation transforms the scores to a Boolean mask. It works by
looking at the magnitude of the scores and selecting the k largest values to be part of remaining
pruned network. In this way, we draw comparisons between the construction of scores and
the selection thereof. When framed in this way, the traditional magnitude pruning scheme can
be restated as a combination of two operations on the magnitude criterion: First scoring the
weights by magnitude and then selecting the scores by their magnitude.

3.3.2 Proposed Algorithm

Based on this observation outlined above, we propose a novel approach of combining two
scoring mechanisms by substituting the second, previously always magnitude based operation,
with a different state-of-the-art scoring criterion.

By doing this, we hope to be able to leverage insights from the information available to both
algorithms and produce a better performing lottery ticket as a result of this.

Algorithm 1 Stacked Scoring

Require: network f (x; θ0), compression ratio ρ, scoring function a, scoring function b
m← 0 ▷ Initialize mask
Sa ←− a(θ0) ▷ Obtain intermediate scores from a on θ0
Sb ←− b(Sa) ▷ Obtain intermediate scores from b on Sa
τ ←− (1− ρ) percentile of Sb ▷ Find threshold
µ←− τ < Sb ▷ Update mask
f (x; µ

⊙
θ0) ▷ Apply mask

At the core of the algorithm proposed lies the sequential application of two scoring algorithms
as outlined above. The first one, Step 1 obtains the intermediate scores from the scoring func-
tion A applied on the initial weights of the model. The second one applies scoring function
B on the intermediate scores. For the scoring functions, we test the same selection of state-
of-the-art algorithms as in the preceding section, SNIP, GraSP and SynFlow, and magnitude
based pruning as a baseline. In the case of SNIP and GraSP, the scoring functions require more
information than just the value of the weight. For the backward passes performed, the scoring
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function needs to have the data loader and model available. Therefore, the simplest implemen-
tation is to temporarily replace the model weights with the intermediate scores, resetting them
to their original initialisation after the the computation of the mask.

We evaluate this algorithm on the accuracy of the Lottery Ticket at different values of sparsity
and compare it to the existing algorithms.

With this experiment, we again hope to prove that combining pruning algorithms leads to
higher performing sub networks.

3.4 SaW: Scores as Weights

Building on the idea outlined in the previous section, we raise the question whether the scores
themselves can be used as initial values to prune on and also begin training with.
As with previous the experiment, this experiment is also motivated by the relationship between
pruning scores and weight magnitudes as both represent a metric of weight importance. Fur-
ther, to apply Stacked Scoring as described in the preceding section, we already implement a
mechanism to apply the loss function to pruning scores to be able to use data-aware pruning
schemes as the second phase scoring criterion.

In the implementation of Stacked Scoring, weights are replaced by the intermediate score and
later reset to their initial value. The two main differences to Stacked Scoring therefore are, that
we only calculate the intermediate scores and we we don’t reset the weights to their initial
values.

The impact of weight initialisation schemes has been discussed in literature Lee et al., 2019,
finding that the random initialisation for a network has a large impact on the effectiveness of
pruning methods applied. Effective initialisation of neural networks however is an entire field
of study (Narkhede et al., 2022) separate from pruning and not the focus for this thesis. It has
been shown that there are initialisation schemes that perform better than a uniformly random
distribution (Glorot and Bengio, 2010; K. He et al., 2015b) when adhering to the stochastic
attributes as outlined in the schemes described. Pruning scores are not designed to be effective
initial values. However, their magnitude is related to the importance of the weight and thus
also related to the contribution the weight should make to the final output. Therefore, we
hypothesize that pruning scores are suitable to be used as weights.

We evaluate this experiment on the basis of whether an unpruned network is able to train suc-
cessfully at all when using pruning scores as weights. Further, we apply all pruning algorithms
in scope on weights generated from all pruning algorithms and test the performance in term of
accuracy of the Lottery Ticket on the task.
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Chapter 4

Experimental Setup

The experiments described in chapter 3 are implemented on common code base providing
a shared environment. Based on the publicly available repository from the team behind the
SynFlow algorithm Tanaka et al., 2020, we implemented an environment where we can conduct
and analyze the experiments described. In this chapter, we aim to give a brief overview on how
the experiment environment works and how we implement the concepts described in chapter
3.

4.1 Code base

We selected the SynFlow code base as the foundation, despite the availability of OpenLTH
Jonathan Frankle, 2020, a framework to conduct lottery ticket experiments provided by the au-
thor of the original Lottery Ticket Hypothesis Frankle and Carbin, 2018. OpenLTH implements
all experiments found in Frankle and Carbin, 2018; Frankle et al., 2019; Frankle et al., 2020,
along with a highly configurable structure to run custom experiments with the Lottery Tickets.
Experiments can be conducted from the included command line interface, without changing
any source code.
For our purposes, we found OpenLTH to be less suitable, as it is not easily extendable and does
not include any other pruning strategy than iterative magnitude pruning. In comparison, the
SynFlow code base not only includes implementations of the different pruning algorithms in
scope of this paper, it also is easier to understand and extend. Therefore, we decided to base
our implementation on it instead of the more obvious choice of OpenLTH. Significant changes
to the code base however were necessary to be able to specify, parallelize, monitor, persist and
analyze the experiments in a way suitable in our context. All code is written in Python (Van
Rossum and Drake, 2009) and uses PyTorch (Paszke et al., 2019) as the machine learning library
and is available on GitHub1.
A full overview on the software and hardware used can be found in Appendix A.

In total, our final results build on over 7000 individual runs, with those models taking over
120GB of storage to persist. All of this data is available on the ZHAW SharePoint2.

4.2 Model and Task

In the literature, several standard models and tasks are used to compare the performance of
the different pruning algorithms. Among the widely used models are LeNet (LeNet_300_100,
LeNet-5, Lecun et al., 1998), VGG (-11, -16, -19, Simonyan and Zisserman, 2014) , ResNet (-16,

1GitHub: https://github.zhaw.ch/lutzurb1/BAIT
2Sharepoint: https://zhaw-my.sharepoint.com/:f:/g/personal/lutzurb1studentszhawch/Env −

l4iTtWlNlpovR4Fx7sBwSKsC2ks f apyHkl8jenK2g?e = UNS5nk
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-18, -20, K. He et al., 2015a) and the WideResNet variants thereof (Zagoruyko and Komodakis,
2016). Between these models, there is a significant difference in size, ranging from 266’200
parameters for a LeNet_300_100 to over 140 million for a VGG-16. For us, the ability to iterate
the experiments and get results quickly is crucial. Therefore, only smaller models are feasible
for us.

Based on these observations, we decide to implement a LeNet_300_100 model, for several rea-
sons. Firstly, it is well established and used across multiple publications (Frankle and Carbin,
2018; Lee et al., 2018; Uber et al., 2020) relevant in our context. Secondly, it has a small num-
ber of parameters that allow us to train it in a reasonable time on our setup. Lastly, its simple
architecture allows us to easily reason about it. Despite its name sounding similar to the more
popular LeNet-5 (Lecun et al., 1998), the LeNet_300_100 architecture is a fully connected Multi
Layer Perceptron (Hornik et al., 1989) with two hidden layers and contains no convolutional
layers (LeCun, Haffner, et al., 1999) like a LeNet-5 would have (Lecun et al., 1998). This leads
to a model that is comparably fast to train on the hardware available to us in the context of this
thesis. The Model is trained on the task of recognizing hand written digits from images, the
dataset used for this task is MNIST (L. Deng, 2012), as used in Frankle and Carbin, 2018 and
Lee et al., 2018.

Many different architectures have been suggested in the literature for the task of recognizing
hand written digits, often with Top-1 accuracy 3 scores much higher than what we achieve
with our LeNet_300_100 model (An et al., 2020; Hirata and Takahashi, 2020). From this, we
conclude that a simple architecture such as a LeNet_300_100 is not the ideal choice for this
task when aiming for maximum performance (Gupta, 2020). For the purposes of this thesis
however, absolute performance is not the priority. Instead, we aim to observe the change in ac-
curacy under pruning. Therefore, we take the Hyperparameters found in Frankle and Carbin,
2018 and keep them static and unoptimized across the experiments conducted, to ensure com-
parability between results.

FIGURE 4.1: Illustrative example of a fully connected neural network with two
hidden layers. In the case of a LeNet_300_100 model to be used on MNIST, the
input layer (leftmost layer on illustration) has a dimension of 784 neurons, corre-
sponding to each pixel in the input image with dimensions 28 by 28. The hidden
layers are 300 and 100 neurons in size according to the definition of the architec-
ture. The right most layer represents the output classes, for MNIST this results in

10 neurons needed.

3Top-1 Accuracy is one of the standard performance metrics used in our context (Frankle and Carbin, 2018; Lee
et al., 2018; Wang et al., 2020; Tanaka et al., 2020)
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4.2.1 Hyperparameters

To better understand the effects of the changes to variables, we choose to keep the basic Hy-
perparameters stable across all of our experiments. For our model and training process, we
adapt the Hyperparameters used in the original Lottery Ticket Hypothesis. A full reference of
all hyper parameters used can be found in appendix D.

We focus on a small number of variables to specify our experiments. All of the following
parameters are changed depending on the experiment:

• Pruning Algorithm

• Desired Sparsity

• Initialisation Strategy

• Pruning Schedule: Upfront or Iterative

• Pruning Schedule: Single- or Multi-Shot

With changes to any of these variables, we are able to specify all the experiments in this thesis.

4.3 Statistical Significance

To test results for statistical significance, we apply a well established p-test criterion, measuring
whether or not a given result compared to a baseline is the product of randomness. As was
done by Tanaka et al., 2020 and is common practice (Bzdok et al., 2018), we choose α to be 0.05
as the threshold.
For more information on statistical significance tests in the context of machine learning, Horel
and Giesecke, 2019 provide an overview.
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Chapter 5

Results

In this chapter, we give a detailed overview on the results of the experiments described in
chapter 3, as executed in the environment described in chapter 4.

5.1 Baseline Performance

To establish a baseline to compare our changes to the algorithms in our experiments, we run
each pruning algorithm in its original form on our model and task. In addition to the four
state-of-the-art pruning algorithms we selected, we run each experiment on a randomly pruned
baseline (Su et al., 2020). This allows us to better contextualize the results produced by more
sophisticated algorithms.

Without pruning, our networks achieves an accuracy of 98.24, which is in the expected range
of such basic architecture (Gupta, 2020).

The out of the box, the unaltered versions of the algorithms on our model and dataset mirrors
findings from previous work (Tanaka et al., 2020) for SNIP and SynFlow. Surprisingly, in our
context, we observe better results from SNIP compared to GraSP, whereas in the original pa-
per for GraSP, a higher accuracy of the LTs produced by GraSP is reported (Wang et al., 2020).
We theorize that the this difference could be due to our model architecture which is a simple
multi layer perceptron, whereas Wang et al., 2020 only benchmark their algorithm on VGG
and ResNet architectures. Figure 5.1 illustrates the drop in Top-1 Accuracy of a LeNet_300_100
model compared to the unpruned model across sparsity levels of 50% to 0.4% of weights re-
maining on a logarithmic scale.

FIGURE 5.1: Baseline Performance of pruned networks compared to the un-
pruned model (red line) with the model sparsity on the x-axis with a logarithmic

scale and Top-1 Accuracy on the y axis.
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Similar to previous findings (Frankle and Carbin, 2018; Tanaka et al., 2020) and in line with
intuitive expectations, the accuracy of the resulting lottery ticket generally decreases as more
weights are removed, as fewer weights limit the models ability to learn (Hoefler et al., 2021).
In this case, as we use a model with 266’200 parameters in total, only 1’064 parameters remain
at the lowest measured sparsity of 0.4%. Interestingly, random pruning is able to perform
decently until a sparsity of 2%, after which accuracy drops significantly. This again is the effect
of networks being easy to prune in the trivial range, which others have described previously
(Su et al., 2020; Hoefler et al., 2021).

When investigating the magnitude of weights that have been selected by the pruning algo-
rithms, we observe a pattern across all pruning algorithms. All pruning algorithms appear to
be selecting weights from a bi-modal distribution of initial values. For magnitude pruning,
which is applied iteratively here as per IMP, SNIP and GraSP, this bi-modal pattern is also
present in the distribution of final weights after training, where as for SynFlow, this is not the
case.

We hypothesize that despite the information advanced pruning algorithms have available, the
magnitude of a weight still is one of the most important factors in whether or not to prune a
weight. In the case of data aware algorithms like SNIP and GraSP, Su et al., 2020 argue that
this might indicate the failure of the pruning algorithms to use the information about the data
available to them and instead to a large extent use the magnitude criterion. For SynFlow, we
hypothesize that this is an indication on its reliance on the magnitude criterion when scoring
weights.

FIGURE 5.2: Distribution of weights chosen by different algorithms chosen at
0.5% sparsity for a single set of initial weights.

With the distribution of weights being similar across different algorithms as shown in figure
5.2, it might appear as if the different algorithms find similar Lottery Tickets. As shown in
figure 5.3 as we measured with the Jaccard index (Costa, 2021), the lottery tickets do share a
common core. Thus we are able to confirm the findings from Paganini and Forde, 2020.
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FIGURE 5.3: Jaccard similarity between two Lottery Tickets found by algorithm
A and algorithm B. Even at low sparsity of 0.5%, a common set of weights is se-
lected. On the y-axis, higher Jaccard similarity implies a larger set of overlapping

weights.

In summary, by confirming findings described in previous work as outlined above, we are
able to verify that our implementation of pruning scores works and we are able to build our
experiments on it.

5.1.1 Ablation Study: Influence of Pruning Schemes on Lottery Ticket Performance

As detailed in Chapter 3, a substantial part of any pruning algorithm other than the scoring
mechanism itself is the way it is applied. For example, the algorithm proposed in the original
Lottery Ticket Hypothesis, Iterative Magnitude Pruning, uses a well-known and basic scoring
criterion but applied it in an iterative pruning schedule during training and additionally ap-
plied weight rewind after each pruning iteration. Others, like SNIP, are proposed to be used in
a single-shot pruning schedule before training. In this section, we investigate ways to compare
the performance of different pruning criteria independently of the way it is applied. We em-
pirically test every combination of pruning criteria and schedule and measure the accuracy of
the resulting Lottery Ticket.

We implement the following pruning schedules as described in literature:

• Iterative Single Shot (ISS): The network is trained k times until an early stopping criterion
is met, after each of which n

p·k weights are removed, for n is the total number of weights
and p is the ratio of weights remaining at the end of the process. After pruning, the
weights are reset to the value they were before training. This schedule, in combination
with the magnitude scoring, is the basis for the original lottery ticket research (Frankle
and Carbin, 2018).

• Upfront Single Shot Pruning (USS): After initialization, before training, the pruning scores
are calculated and applied. Both GraSP and SNIP proposed this schedule (Wang et al.,
2020; Tanaka et al., 2020).

• Upfront Multi Shot Pruning (UMS): Similar to Single Shot Pruning, the network is scored
and pruned before training. However, in a multi shot schedule, there are multiple epochs
of scoring and pruning, leading to the desired prune ratio. This schedule was proposed
by Han, Mao, et al., 2015 and again in the context of SynFlow (Tanaka et al., 2020).

• Iterative Multi Shot (IMS): Same as ISS, but instead of applying a Single Shot schedule at
each pruning stage, pruning as done in an Multi Shot way. This schedule was not used
in the original publication of any of the four selected algorithms.
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While the recent work we base our experiments on proposed these different schedules, they
in fact predate these publications (Han, Mao, et al., 2015). As outlined in chapter 3, other
schedules exist (Hoefler et al., 2021). We chose this selection of schedules specifically due to
their appearance in the context of the algorithms we are investigating.

FIGURE 5.4: Change in accuracy for a given algorithm across different pruning
schedules, compared to the originally proposed version of the algorithm.

The idea to see if altering the way a pruning algorithm is applied improves performance is not
new. Tanaka et al., 2020 apply the same multi-shot approach they apply to their own algorithm
to SNIP and found an improvement in performance as well. We are able to confirm this ob-
servation and hypothesize that the reason for this be due to more information being available
to the algorithm, as with each epoch in the multi-shot pruning regime, data is loaded and gra-
dients calculated. The same is not true for magnitude pruning, where it both empirically and
theoretically (LeCun, Denker, et al., 1989) does not make a difference regardless how many
pruning epochs are applied, as the magnitude of the weights remains the same, regardless of
whether or not other values have been pruned in the meantime. When running SynFlow with
less pruning epochs than originally proposed, performance drops significantly, as described by
Tanaka et al., 2020.

The performance of GraSP under different pruning schedules seems to improve at lower ratios
of weights remaining but is worse at trivial sparsity. The large variation in results across the
three repeats, we hypothesize, potentially indicates an issue related to the specific implemen-
tation in the way the PyTorch loss is used and later re-used, but did not find a solution to this
issue in the time available. From the theory (Wang et al., 2020), we did not find any reason why
it should not improve when applied iterative during training. While we always find improve-
ments when switching to an iterative schedule instead of an upfront one, there is no fixed value
by which the accuracy of the resulting LT improve.
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(A) The performance of the different prunign algo-
rithms when applied iteratively compared to IMP.

(B) The performance of the different pruning algo-
rithms when applied before training compared to

SynFlow.

FIGURE 5.5: Algorithms applied in all schedules compared to the previous best
version for a given upfront or iterative schedule.

When comparing the performance of each algorithm on the same pruning schedule, improve-
ments over IMP can be found. Figure 5.5a illustrates the relative improvement of each al-
gorithm over IMP, showing that both SynFlow and SNIP outperform IMP at high values of
sparsity. Further, when applying the multi-shot approach described in the context of SynFlow,
SNIP outperforms SynFlow at high sparsity but not otherwise. This is a surprising finding
given that SynFlow’s main focus was to improve performance in this area. More research is
required to investigate why this is the case.

(A) Comparison between LTs found by the same al-
gorithm in iterative and before training schedules.

(B) Comparison between LTs found by the same al-
gorithm in one-shot and mutishot-shot schedules.

FIGURE 5.6: Comparison of Jaccard similarity between lottery tickets found by
the same algorithm, once applied iteratively and once upfront. At high values
of sparsity, a more informed pruning schedule leads to a different Lottery Ticket

compared to an upfront version of the same algorithm.

Building on the findings from Paganini and Forde, 2020 detailed in chapter 3, we investigate
whether the core set of weights present in all of the algorithms when pruning with the orig-
inal schedule remains when changing the pruning schedule. As visualized in figure 5.7, we
find this not to be the case. Both switching from an upfront to an iterative schedule as well as
applying multi-shot instead of single-shot way creates highly distinct Lottery Tickets at high
sparsity. We interpret this finding to signify that the set of weights selected by the algorithm is
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highly sensitive to the way it is applied.
Also, we conclude from these results, that the core subset of weights found by all of the algo-
rithms may not be as important as thought. When comparing upfront LTs with the correspond-
ing iterative LT, no weights are shared, thus the original core subset of weights is lost. Yet, there
is a performance increase.
Therefore, when searching for higher performing Lottery Tickets, we will not focus on the core
LT or try to optimize for it. We suspect that the overlap between the Lottery Tickets might stem
from the fact, that all algorithms are reliant on the magnitude criterion to a certain degree as
shown in figure 5.7a. To validate this assumption, more research is required.
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5.2 Meta Learning Scores

In this section, we describe the results of the meta learning approach. Firstly, we give an
overview on how the data used was obtained and transformed. Then, we compare the training
metrics of the selected models on our data. Lastly, we use each model to prune a LeNet_300_100
to values of sparsity up to 0.5% and measure its Top-1 Accuracy on MNIST and describe the
results.

5.2.1 Data Preparation

As shown in the previous section, of all algorithms, the best Lottery Ticket can be found with
SynFlow with an iterative multi-shot (IMS) schedule. Therefore, we are using this Lottery
Ticket as our target variable. Training data comes from the scores of the four state-of-the-art
algorithms, each calculated on the exact same weight initialization as the target variable. We
use three different runs with all five pruning strategies necessary to a sparsity of 0.5% applied.
We decided to prune to this ratio of weights remaining for our training data, as we observe the
largest differences in this sparse environment. In total, we have 798’600 individual data points.

(A) Histogram of the scores of the algorithms

(B) Correlation between the features and the target.

FIGURE 5.7: The data used to train the model

As shown in figure 5.7a, the different algorithms do not produce scores in the same range,
therefore we scale each feature to a range of [0, 1]. Of this data, we found no single feature to
correlate well with the target variable, as shown in figure 5.7b.

A promising idea is to rank all of the values for a feature and use this rank instead of the value
of the score output, as this scales the scores part of a Lottery Ticket at a given sparsity into to
the same range, meaning all weights that should be part of the LT at the same sparsity have
scores in the same range.
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However, in empirical tests we could not confirm any benefit of this method, leading us to
hypothesize, that it is more important for the model whether or not a score is close to zero
instead of the exact position in the ranking.

In appendix B, we explore options to improve the performance of the model by providing
it with more features to learn on, but are not able to demonstrate an improvement by this
approach.

5.2.2 Training

We train multiple models on the data described above and evaluate their performance on the
test dataset. In this chapter, we describe which models we selected to implement and how well
they were able to learn on our dataset.

We compare the performance of the different models with both the mean squared error metric
(Das et al., 2004) as well as the R2 (Draper and Smith, 1998) score. Both of these are well
established metrics in the domain of linear regression (Redell, 2019) and simple to calculate.

Linear Regression

To evaluate if there is a simple linear relationship between the four scores and the approxima-
tion of the ideal scores to produce a lottery ticket, we implement two linear regression (Kuchib-
hotla et al., 2019) models. The first one is a plain least squares regression (Kuchibhotla et al.,
2019), while the second is based on stochastic gradient descent or SGD (Robbins and Monro,
1951). The selected models are standard options for regression problems (Kuchibhotla et al.,
2019). For both, we use implementations available in Scikit-learn Pedregosa et al., 2011 in the
form of the LinearRegressor and SGDRegressor classes. All Hyperparameters were left at the
documented default.

Model R2 (train) R2 (test) MSE (train) MSE (test)

LinearRegression 0.033137 0.032998 0.000053 0.000057
SGDRegressor 0.022484 0.021587 0.000054 0.000057

TABLE 5.1: Training metrics of the linear regression models.

For both models, table 5.1 contains the evaluation metrics R2 and Mean Squared Error (MSE).
As for R2, a value closer to 1 implies that the model has predicted everything correctly (Draper
and Smith, 1998). With scores below 0.05, both models have failed to learn meaningful rep-
resentations of the data. In regards to mean squared error, both models are of similar perfor-
mance. While it is close to zero, the absolute value in it self does not convey much information.
We will later use it to compare the different models.

Tree based Regression

We select two models as examples of regression based on trees and evaluate, whether this
class of regression models is suitable for our task. Specifically, we select both a Decision Tree
(Quinlan, 1986) as well as a Random Forest (Maclin and Opitz, 1999).
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R2 (train) R2 (test) MSE (train) MSE (test)
Model

DecisionTreeRegressor 1.000000 -0.865044 1.074603e-19 0.000109
RandomForestRegressor 0.859253 0.010510 7.765114e-06 0.000058

TABLE 5.2: Training metrics of tree based models.

As can be seen in table 5.2, the Decision Tree achieved an R2 score of 1.0, while on the test set,
the same metric is negative. In combination with the similar pattern for MSE, we interpret the
model to overfit on the data. For the Random Forest, it is a slightly better picture but still a very
high R2 on train while it being low on test, with MSE indicating the same overfitting behaviour.
The RandomForestRegressor with its default parameters trained on the data described takes
2GB to store, which by far is the largest model of the ones tested and has led to challenges
when applying the model in our parallelized setup.

Multi Layer Perceptron

In addition to the basic models from Scikit-Learn, we implement a fully connected Multi Layer
Perceptron (Hornik et al., 1989) in PyTorch and train it on the data described above. Based on
observations described in Lecun et al., 1998, we choose a simple architecture with two hidden
layers, one of size 64, the latter of size 32. The input layer corresponds to the four features
available and as an output, a single neuron is configured. Between the layers, we chose a
basic ReLU activation function (Agarap, 2018) with a Sigmoid activation (Nwankpa et al., 2018
bringing the values in the desired range at the very end. For the loss function, a Mean Squared
Error loss is used, as we use this metric to evaluate the performance later. Again keeping with
well established options, we use an SGD optimizer with a learning rate of 0.001.

With the limitations in place in the context of this thesis, the Hyperparameters of this network
were not systematically optimized as could be done with mechanisms described in the litera-
ture (T. Yu and Zhu, 2020). Instead, we used what we recognize as default parameters based
on the documentation (“PyTorch documentation”, n.d.).

FIGURE 5.8: Learning curve of the Multi Layer Perceptron implemented in Py-
Torch
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While training loss of the MLP model decreases over the course of the first iterations, it fails to
achieve a loss as low as the tree based or even linear models.

R2 (train) R2 (test) MSE (train) MSE (test)
Model

MLP -42.310778 -45.687378 0.002472 0.002467

TABLE 5.3: Training results of the MLP implemented in Pytorch.

Despite being a comparatively complex model, the MLP as it is implemented has the lowest
R2 and the highest mean squared error of all the models tried. We suspect that this might be
an indication that the information to successfully learn to predict Lottery Tickets based on LTs
found iteratively might not be present in the data.

5.2.3 Evaluation

Overall, Lottery Tickets obtained by all models achieve a Top-1 Accuracy higher than those
from random pruning but fail to outperform any of the preexisting algorithms. However, of
all the models implemented, the MLP is one of the highest performing models of the selection.
This is unexpected considering the metrics obtained after training, which were orders of mag-
nitude better for other models when training and testing on the dataset used. In the context
of these results, the training metrics observed for the MLP may not signify bad performance
but good generalization. Also relatively well performing is the linear model based on SGD,
implying the presence of linear relationships in some form. However, we found the results of
the SGD model not to be statistically significant compared to the magnitude criterion we use
as a baseline in figure 5.9

FIGURE 5.9: Top-1 Accruary of Lottery Tickets obtained by different models rel-
ative the performance of a Lottery Ticket obtained by the magnitude criterion.
While both SGD and the PyTorchModel on average outperform the baseline of
magnitude pruning, only for the PyTorchModel we are able to measure statistical

significance.

One of the key areas to further improve our approach we suspect is the fact that all models
only consider the context of the scores for a single weight at the time. While each score on
its own tries to produce a connected network, our model chooses weights from all of these
different, in itself connected, sub network. This, we suspect, could be limiting the effectiveness
of a model trained in this way. As discussed in chapter 3, alternative approaches exist. If a
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model would be trained on full networks instead, a mechanism to optimize the pruning scores
to produce connected networks could be introduced, mitigating the suspected issue. More
research comparing a metric of connectedness of the different LTs is required to validate this
hypothesis.

Further, we raise the question whether training a model to produce scores based on other,
separate scores is a promising idea to reach new levels of performance in pruning in the first
place. With our setup, the model itself is not aware what the desired sparsity of the Lottery
Ticket will be. Instead, it produces scores which are then selected by their magnitude by an
operation after the prediction itself. However, we question the assumption, that the weights
selected to be part of the LT at 0.5% sparsity are also part of the best LT at 5%, as we hypothesize
that the importance of substructures could be dependent on the number of weights allowed in
the final result. From the state-of-the-art algorithms we selected in the context of this thesis,
none is sparsity-aware. We suspect, that interesting questions could be investigated in this area
in the future.

Overall, more research is required to validate whether our findings and assumptions above
generally hold.
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5.3 Stacked Scoring

To assess the performance of the lottery tickets obtained by a stacked scoring algorithm, we
implement all possible combinations of SNIP, SynFlow, GraSP and Magnitude pruning. We
then apply them to find LTs on the model and task selected in chapter 4. The LTs found are
evaluated on the performance and the Top-1 accuracy is measured. To contextualize the algo-
rithm, we compare the results to the unpruned network, the best approximation of the ideal LT
found by iterative, 10x multi-shot SNIP and to the individual algorithms used in a given stack.

FIGURE 5.10: Stacked pruning performance relative to the unpruned network.
Stacks sharing the same algorithm A are visualized in the same diagram.

As visualized in figure 5.10, both LTs from stacks based on SNIP and SynFlow demonstrate per-
formance comparable with the individual baselines. As shown in figure 5.10, multiple stacks
are capable of finding trainable sub networks.

FIGURE 5.11: Absolute Top-1 Accuracy for the top 20 best performing algorithms,
sorted by their performance at 0.5% sparsity. For the two Algorithms outperform-

ing SNIP, not statistical significance is observed compared to SNIP.
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For the combination of GraSP in phase A and Magnitude pruning in phase B and by using
SNIP as both A and B phase of the stack, we observe higher accuracy compared to the next best
baseline. To inspect these results further, we conducted P-Tests for the two best performing
algorithms and the baseline SNIP results, finding no statistical significance apart from SNIP/S-
NIP at the trivial sparsity of 20%. Therefore, we find that no stacked algorithm outperforms all
baselines reliably on our model and task.

Other promising combinations include SNIP/SynFlow, Magnitude/SNIP, SynFlow/Magni-
tude and SNIP/Magnitude, all of which are able to outperfom the Lottery Ticket found by the
vanilla SynFlow algorithm on average, but not to a statistically significant degree over three
runs.

All of these stacks mentioned so far besides SNIP/SNIP and SNIP/SynFlow have Magnitude
pruning as either the first or second phase algorithm. For SynFlow, SNIP and Magnitude prun-
ing itself, applying the magnitude criterion in the second phase is expected to not influence
the performance, as the scores produced are all positive. Indeed, neither the results of Syn-
Flow/Magnitude nor SNIP/Magnitude are statistically significant at any level of sparsity. The
same does not apply to GraSP/Magnitude. As visualized on figure 5.7a, we observe GraSP to
produce positive as well as negative scores.
As shown in table 5.11, our work on stacked pruning reveals that taking the absolute value
of the score found by GraSP improves the Top-1 Accuracy of the LT at high values of sparsity
drastically, from 77% in its original form, to 90.5% at 0.5% sparsity.
With such high improvement with such small adjustment and in the light of previously men-
tioned suspicious observations mentioned in the baseline comparison as well as the ablation
study earlier in this thesis, we raise concerns that this might be due to an implementation error
in the code base we used. Further research is required to confirm that this result holds true for
alternative implementations of GraSP.

In summary, we conclude that it is possible to sequentially apply two pruning algorithms and
get a trainable Lottery Ticket with Score Stacking. From the fact that pruning scores themselves
can successfully be the basis of another scoring criterion reveals interesting attributes about the
scores and the similarities between the initial weights and the scores, as for the second phase,
the weights can be substituted by the scores while retaining the ability to produce Lottery
Tickets.



Chapter 5. Results 42

5.4 SaW: Scores as weights

Building on the findings of stacked scoring, we implement a mechanism where the intermedi-
ate scores are kept as weights and not reset to their original value. Again, we implement all
combinations of the state-of-the-art pruning algorithm selected and evaluate the Top-1 Accu-
racy of the LTs produced on our model and task. Based on the observation made earlier in this
chapter that the most informed algorithms tend to select weights from a bi-modal distribution,
also run an experiment where we initialize the network in such distribution. As most algo-
rithms only produce positive scores, we transfer the sign of the original weight to the score to
achieve a balance between positive and negative weights. Also, we scale all scores to fall in the
range [−1, 1].

Initialisation Strategy Average Top-1 Accuracy Average Training Iterations

Standard (Kaiming Normal) 98.235000 12819.333333
SNIP 97.863333 12037.666667
Bi-Modal 97.810000 12506.666667
SynFlow 96.596667 10787.000000
GraSP 80.833333 22512.000000

TABLE 5.4: Results of a fully connected Lenet_300_100 on MNIST using pruning
scores obtained on the kaiming initialized weights as weight initialisation to be-

gin training with.

With these results, we show that the scoring criterion can also successfully be used as a weight
initialization and train to a high accuracy. From the histogram of the scores presented in figure
5.7a, there is a qualitative similarity between the scores from SynFlow and the magnitude of the
weights, as expressed by the scores of the magnitude pruning criterion. Quantitatively, there is
a measurable correlation between scores from SynFlow and the weight magnitude, as shown
figure 5.7b. Therefore, it comes as no surprise that the SynFlow scores work as initial values as
well. However, SNIP scores perform even better, despite the difference in the distribution of
the values as well as the lower but still present correlation effect shown in figure 5.7a. Of all the
initializations observed, scores obtained by GraSP result in the least performant network with
an over 15% difference to the next best initialisation. GraSP is also less correlated to the weight
magnitude.

FIGURE 5.12: Performance of Lottery Tickets obtained by different pruning al-
gorithms on the different initial weights relative to the performance on weights

initialized with kaiming.



Chapter 5. Results 43

When looking at the performance of the Lottery Tickets after pruning across different initial-
isation schemes, we observe large performance improvements at high sparsity. While GraSP
has performed worse than SNIP and SynFlow at high values of sparsity, it benefits the most
from an alternative initialisation scheme. Both SynFlow and SNIP scores increase the perfor-
mance of the Lottery Ticket drastically when used as initial values when pruning with GraSP.
Interestingly, the random values from a bi-modal distribution also perform well, leaving us
to hypothesize that the performance increase is not due to more information being available
but related to general dynamics present with different initialisation schemes. Also a signifi-
cant impact was observed at high values of sparsity when pruning with magnitude pruning.
However, while the improvement compared to magnitude pruning on standard initializations
is large, it is still well below the Top-1 accuracy LTs produced by both SNIP and SynFlow.

FIGURE 5.13: Top 20 best performing baselines on different Initialization Strate-
gies. On weights initialized with SNIP scores, SynFlow outperforms itself com-
pared to standard weights. (* denotes a statistically significant difference com-
pared to the same algorithm on standard initializations at the same sparsity

across three runs).

While for SNIP, we could not measure any improvement on any initialization, we observe an
improvement to the LT obtained with SynFlow when initialized with SNIP scores. Figure 5.13
shows the absolute Top-1 Accuracy for the baseline algorithms applied on weights initialized
with different scores. While the improvement from SynFlow on SNIP compared to SynFlow
on standard initializations is statistically relevant, the same is not the case when comparing
it to the baseline SNIP on standard inits. Therefore, with this experiment, the SNIP baseline
continues to produce the best performing Lottery Tickets at low sparsity.

With this result, we show that weight initializations can have a large effect on the performance
of a given pruning algorithm and are thus able to demonstrate, that it is possible to produce
Lottery Tickets by combining two pruning algorithms in this way.
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5.4.1 Combining all approaches

As a last experiment, we run the meta models trained as well as the stacked variants on all
different initialization strategies and compare the results.

FIGURE 5.14: Comparison of the top 20 algorithm and initialisation combinations
across all algorithms described. "Magnitude on standard (ISS)" is IMP from the
original Lottery Ticket Hypothesis. A * denotes a statistically significant differ-
ence compared to SNIP on weights initialized with a standard procedure on the

same sparsity.

As shown in figure 5.14, we are able to outperform the baseline SNIP algorithm when using
both stacked variants of SynFlow and Magnitude scoring on SNIP inits. For the non-trivial
sparsity of 0.5%, the results are statistically significant over three runs. Further figure 5.14 also
shows performance of the original Lottery Ticket Hypothesis algorithm (Magnitude on stan-
dard (ISS)), where the Lottery Ticket is found by training the network repeatedly. As shown,
our best algorithms even outperform this Lottery Ticket on average at 0.5% of weights remain-
ing, despite pruning the network before initialisation instead of during training, but the result
is not statistically significant in this regard.

Yet, these results close the gap in performance between LTs obtained before training and LTs
obtained with training. With this experiment, we demonstrate that it is possible to obtain a
Lottery Ticket of equal performance to one found with traditional IMP, without the need for
any training.

However, despite these encouraging findings, we only observe statistical significance for out-
performing baseline SNIP at 0.5%. When testing a Magnitude/SynFlow Stack on SNIP for
0.4%, we still observe a better performance on average, but it is no longer statistically signif-
icant. We observe the same when comparing our results with IMP, additionally, IMP always
outperforms our best algorithm when more than 0.5% of weights remain.
With the finding being this sensitive to the specific sparsity, we suspect that running more runs
is required to validate our results.
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Chapter 6

Conclusion

6.1 Summary

In this thesis, we have raised the question whether several pruning algorithms can be combined
to obtain higher performing Lottery Tickets. We proposed three distinct ways of combining
algorithms: A meta learning model, Score Stacking and Scores as Weight initialisation (SaW).
For combinations of the four state-of-the-art pruning algorithms SynFlow, SNIP, GraSP and
IMP we selected, we implemented the three different approaches in a common environment
on a single model and task, building on an existing code base created by the team behind
SynFlow.

By comparing all algorithms on the same model and task, we established baseline performance
measures on the Top-1 Accuracy of the Lottery Ticket produced at different sparsities. We show
that not every algorithm works as well on our model as outlined in the original publication,
especially GraSP falls short of its promised performance. To isolate the scoring criterion from
the schedule it is applied, we run an ablation study comparing every scoring criterion on every
pruning schedule described in the context of the four algorithms selected.

We show that the best baseline on a before-training schedule, SynFlow, can be outperformed by
a SNIP when applied in a multi-shot way. Further, we are able to demonstrate, that the original
algorithm to find Lottery Tickets can be outperformed when using the iterative schedule from
IMP and the scoring criterion from SynFlow. LTs found with this algorithm outperform the
accuracy of the baseline by 2.45 percent.

Therefore, we use iterative SynFlow as our closest approximation to the ideal Lottery Ticket to
train a meta model with the task to predict pruning scores based on scores provided by the four
state-of-the-art algorithms. We show that learning to predict scores to produce sparse trainable
sub networks is possible and demonstrate a simple Multi Layer Perceptron which is able to
produce Lottery Tickets which outperform those found by the basic Magnitude criterion.

With Stacked Scoring, we propose a novel way of applying different algorithms sequentially
and demonstrate its ability to produce Lottery Tickets even at high sparsity, outperforming our
proposed meta model. Lastly, we propose a novel way of using the scores obtained from the
pruning criteria as weight initialisations and measure the performance of a network initialized
in such way both unpruned and under pruning with different algorithms. We show that the
performance of GraSP can be much improved this way. Further, with stacked Mag/SynFlow
on SNIP initialisations, we demonstrate an upfront pruning scheme capable of outperforming
all baselines at 0.5% of weights remaining by 2.03% as well as equalling the performance of LTs
found by IMP during training.

From these results we conclude that combinations of algorithms can indeed be used to find
better performing Lottery Tickets before training. To conclude on our starting hypothesis, we
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therefore confirm that it is indeed possible to use combinations of pruning algorithms to find
better performing lottery tickets.

Overall, by investigating ideas that have not been tried before, we contribute to the state-of-
the-art and provide a starting point to base further research off.

6.2 Limitations

However, as per the limitations outlined in chapter 3, the general applicability of our results
have to be verified. A major consideration is the fact, that we only used a single model and
task to base our research on. While this restriction was necessary for us, it is advisable to
validate our results on larger models and more complex tasks, especially since with previous
publications in the field of pruning, promising algorithms on small architectures did not scale
to larger ones (Frankle et al., 2020).
Further, for many findings, the statistical relevance criterion was not met at all sparsities. This
instability leads us to believe that further research conducting more repeats is necessary to
confirm any of our findings.

Practially, one has to consider whether a highly sparse Lottery Ticket is the right choice for in
real-world applications. Even in the case of the algorithms we propose, training a lottery ticket
instead of the unpruned network does come at the cost of a drop in accuracy. When a large
model is needed, but the cost of training it is too high, other options like using a particularly
parameter efficient model like EfficientNet (Tan and Le, 2019) can lead to a higher performing
model at lower cost.

Still, from a scientific point of view, our results show, that the limits of upfront pruning are not
yet reached by the existing algorithms.

6.3 Future Work

In the context of this thesis, several open questions remain.

With our experiments around meta learning models, further research is required to investigate,
how much better the network can get at predicting scores when tuning the architecture, hyper-
parameters and increasing the size of the data. Further, it might be worthwhile to investigate
ways to implement a model learning on the level of layers or full networks. For layers, it could
be interesting to find patterns in the weight matrices, for example with techniques known from
image processing. On the full network layer, it remains an open question whether Hypernet-
works can be adapted for this task.
Further, we also propose to train a model with more features than just the outputs of the exist-
ing algorithms. For example, information about the layer a given weigh is in, such as matrix
norms, row and column wise averages could help to build a better performing model.

To understand more about what a leads to a well performing Lottery Ticket, a measurement of
connectedness of the Lottery Ticket would be interesting to analyze. If such metrics are found
that correlate well with the final performance of the Lottery Ticket it would be interesting to
build a model which optimizes for that.

So far in this thesis, we have not analyzed the number of iterations needed until the early
stopping criterion is reached. This idea however is integral to the Lottery Ticket Hypothesis
in its original form. Therefore, we suspect it might be worthwhile to analyze the impact our
proposed algorithms have on this aspect.
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With score stacking, follow up research is needed to validate our findings. It could also be
interesting to merge the concept of meta learning the scores and stacking, i.e either train on
stacked versions of the algorithms, or stack another scoring algorithm on the output of the
meta learner. In this way, even more information would be considered for the scoring mech-
anism. The research around using scores as initial weights opens the door to relate findings
from weight initialization to the pruning scores. Any method by which the initial weights can
be adapted may be also tried in conjunction with the pruning scores.

Overall, with our demonstration that LTs can be found before training which perform just as
well as those found with training raises interesting questions on the influence of the task on the
selection of the Lottery Ticket or whether highly peformant Lottery Tickets exhibit patterns that
are generally applicable. With our algorithm, a dataset of such Tickets can be built up much
more efficiently, as no training is involved, enabling future research to use this strategy.
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Appendix A

Experimental setup

In this chapter, we give a detailed overview on how our experiment environment is setup.

A.1 Basic Structure

As described in chapter 4, we build upon work published by the authors of SynFlow. The
original code is available freely on GitHub1. From this implementation, we reuse the pruning
mechanism, the train/eval loop as well as the data loading logic. On top of these elements,
we completely rebuild the way experiments are specified, executed and persisted. With the
new logic in place, we are able to specify an Experiment object with the variables relevant for
us, create a State object containing the model, data, loss, optimizer and pruner as well as all
relevant Hyperparameters which we then are able to store to disk to analyze later.

A required feature to be able to compare the Lottery Tickets of different pruning algorithms
is the ability of running them on the same set of initial weights. For this requirement, we
implement functionality to reference a set of initialized weights from the model object which
then gets loaded and stored separately and only once across all experiment runs.

From the State object, we construct a dictionary with all relevant Hyperparameters and metrics
for a given experiment run for it to easily be analyzed and aggregated. The Result dictionary
contains a reference to the persisted State of the experiment. The scores, weights and masks
for all layers of the model stored in the state can easily be accessed by a set of functions part of
the analysis module, which allow the caller to search for experiments by passing values with
desired attributes.

A.2 Important changes to the original code base

Several features were added to the original implementation to accommodate our experiments.

As a start, while the code base includes many models and datasets out of the box, the selected
LeNet_300_100 architecture is not included. We implement this model architecture by adapting
the implementation found in OpenLTH. Additionally, we transfer the early stopping mecha-
nism from OpenLTH as well, which was not part of the code base.

Further, we found the mechanism to prune weight based on the scores provided by the pruning
algorithms to be sub-optimal for our experiments. The Boolean mask defining which weights
are pruned and which ones are available is constructed by the steps described in 3. By default,

1https://github.com/ganguli-lab/Synaptic-Flow
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the original implementation uses global pruning which is implemented by calculating a thresh-
old value globally across all layers and then constructing Boolean masks for each layer indi-
vidually. This works well as long as the scoring mechanism produces unique scores for each
weight, which, with the scoring algorithms in their original form, is unlikely as two weights
would have to be initialized with the exact same floating point number. However, we noticed
the issue in our own implementations of scoring criteria, where scores might not be as fine-
grained. Figure A.1 illustrates the issue, which implies that k+n weights might be pruned, for
k is the number of weights that we expect to be pruned and n is the number of duplicates at
the threshold.

(A) Example of a matrix of pruning
scores.

(B) The scores selected with k=2, re-
sulting in a threshold of 3.

(C) The scores selected based on a true
Top-k mechanism with k=2. From the
two duplicate values, the first one in

the index will be chosen.

FIGURE A.1: A visualisation of the issue when selecting weights based on a cal-
culated threshold value with duplicate values

As the we use global pruning, implementing such Top-k mechanism is not trivial, as the Top-
k calculation must be performed across all layers at once, but the resulting masks have to be
layer specific and in the correct dimensions. We solved the issue by constructing a combined
score matrix of size 1x266200 for all layers, calculating the mask on this global scores and then
mapping the result back to the individual layers. This solution ensures that the correct number
of weights are pruned, however it also comes with a drawback. In the case of duplicate values,
it will always prune the weights early in the index first. This results in a pruning decision taken
entirely based on the position of the weight in the matrix and not informed by the score. While
it is useful for testing purposes to be able to deal with duplicate scores, ideally the scoring
mechanism would not produce duplicates in the first place.

A.3 Parallelization

The Experiment execution is entirely containerized. We work with the PyTorch base image
pytorch/pytorch:1.11.0-cuda11.3-cudnn8-devel, which already contains all dependencies for
running PyTorch with CUDA support. In addition to docker itself, we use docker-compose to
orchestrate the three containers used to parallelize the execution of the experiment. We selected
to run three workers after a series of experiments we conducted while observing the resource
usage. Since much of the workload in our case has to do with data loading, the bottleneck
is not the GPU but the CPU and RAM, both of which are primarily occupied in loading the
data. When looking at the GPU usage via nvidia-smi, the CUDA Cores where typically at
80% load. Via docker-compose, we bind mount the code into the containers, allowing us to
run an updated version of the experiment without rebuilding the image. Via docker resource
reservations2, we enable CUDA support within the containers.

2https://docs.docker.com/compose/gpu-support/
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A.4 Monitoring

All training is monitored with Tensorboard, allowing us to follow the progress of the experi-
ments in real time. Apart from train/test loss, we track the Top-1 accuracy, the sparsity as well
as the time per epoch. Further, all hyperparameters as well as histograms of the weights at
different stages during training are stored. Since all workers write to the same bind mounted
directory, we are able to monitor all results across all workers.

A.5 Hardware

Within the ZHAW School of Engineering, a high-performance computing cluster offering 32GB
nVidia V100 GPUs exists3, however, during the duration of this thesis, this cluster was unavail-
able. Instead, we were able to use the cluster based on OpenStack, which provided us with a
Tesla T4 GPU. For the latter part of the thesis, we also had access to a much faster Nvidia RTX
3070.

A.6 Development Setup

We use the tools available within VSCode4 to connect remotely via SSH to the respective ma-
chine. From there, a development container specified in a Dockerfile, separate from the actual
productive one, is built and started. In this way, we have a highly portable environment we
can use on any machine.

A.7 Analysis Setup

To analyze the results generated, we utilize Jupyter5 Notebooks, running withing the VSCode
Jupyter Extension6. From there, we access the data via a set of helper functions part of the
analysis module. Further analyis is done using Numpy7 and Pandas8 for data wrangling as
well as Seaborn9 for visualisations. This toolset was selected due to prior experience of the
authors with this stack.

3https://info.cloudlab.zhaw.ch/
4https://code.visualstudio.com/
5https://jupyter.org/
6https://code.visualstudio.com/docs/datascience/jupyter-notebooks
7https://numpy.org/
8https://pandas.pydata.org/
9https://seaborn.pydata.org/
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Appendix B

Meta Model with additional Features

The meta model producing pruning scores on the basis of a single weight can be extended to
use more features with the goal of providing more information about the weight itself and the
layer a weight is in to the model.

We implement six additional features:

• The weight itself

• The frobenius norm of the whole layer

• The value of the highest activation of the input neuron

• The value of the highest activation of the output neuron

• The average activation of the input neuron

• The average activation of the output neuron

Thus we bring the total number of features up to 10, including the four existing algorithms.

FIGURE B.1: Correlation between all features used in the extended version of the
meta model.
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We observe interesting correlations between some of the features, for example SynFlow corre-
lating well with both the maximum value of the input and of the output value. As for most
other features, the new features are uncorrelated with the scores.

FIGURE B.2: Learning dynamics of the same MLP architecture as use in chapter
5.

As shown in figure B.2, the extended model exhibits a similar training curve as the regular one.

FIGURE B.3: Performance of the extended meta model compared to the original
implementation.

Figure B.3 visualizes the performance of the new extended meta model compared to the orig-
inal implementation described in chapter 3. As is clearly visible, the new model is not able to
produce Lottery Tickets which train to a non-trivial accuracy.

To us, worse performance with more data is unexpected. We hypothesize there to be some
form of implementation error present and recommend to conduct more research to investigate
whether or not the model can be improved.
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Appendix C

Hyperparameters

The table C.1 lists all configurable Hyperparameters in our environment and the values we
used for them.

Parameter Group Parameter Value

Model Parameters model_class lottery
model lenet_300_100
lr 0.1
lr_drop_rate 0.0
lr_drops []
weight_decay 0.0
dense_classifier False
pretrained False
optimizer sgd
init_strategy standard

Data Parameters dataset mnist
train_batch_size 64
test_batch_size 256
prune_batch_size 256
workers 4
prune_dataset_ratio 10
input_shape (1, 28, 28)
num_classes 10

Pruning Parameters strategy mag
sparsity 0.2
prune_epochs 1
prune_bias False
prune_batchnorm False
prune_residual False
compression_schedule exponential
mask_scope global
reinitialize False
prune_train_mode False
shuffle False
invert False

Training Parameters train_epochs 100.0

TABLE C.1: Full set of Hyperparameters used.
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Appendix D

Meeting protocols

Date Attendees Notes

21/02/2022 Prof. Dr. Thilo Stadelmann, Dr. Claus
Horn, Urban Lutz, Alexandre Manai

Kick-off meeting:
- organizational matters:
– Meeting dates (biweekly - 45min)
– Workplaces (At CAI at ZHAW)
- First steps:
– important papers to read first
(lottery ticket hypothesis, Hypernetwork (decided
to set focus on that), Variational Autoencoders)

08/03/2022 Prof. Dr. Thilo Stadelmann, Dr. Claus
Horn, Urban Lutz, Alexandre Manai

- Decided t focus on:
– VGG and ResNet models
– Investigate Transformers and
Hypertransformers
- Look into:
– ADA project
– goal: for different tasks
train model in constrained
enviroment in less than 5 min
– adapt challenge for our thesis

22/03/2022 Prof. Dr. Thilo Stadelmann, Dr. Claus
Horn, Urban Lutz, Alexandre Manai

- Emerging questions:
– Clustering of the LTs possible?
– Do LTs always have same structure?
- Goal setting for next time:
– Generate Dataset
– Preparation of possible models
– what can we expect?
What do we do with it?
What task are we looking at?

01/04/2022 Prof. Dr. Thilo Stadelmann, Dr. Claus
Horn, Urban Lutz, Alexandre Manai

- Emergency meetind due to unfeasible first idea
– look into Dr. Claus Horns slides
– urgently read more papers
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Date Attendees Notes

05/04/2022 Prof. Dr. Thilo Stadelmann, Dr. Claus
Horn, Urban Lutz, Alexandre Manai

- Presented new idea of combining
SotA algorithms
- Interesting ideas:
– weight patterns emerging from different results
from different algorithms
– Explainable AI angle
– simple firstly: compare scores and
the existence of overlap

19/04/2022 Prof. Dr. Thilo Stadelmann, Dr. Claus
Horn, Alexandre Manai

- Coding Enviroment set-up with Tensorboard,
checkpointing, ...
- Used SNIP, GraSP, IMP and Synflow as central
algorithms to combine with data free and
iterative implementations
- 400 ran Experiments with 50/50 split made
of data-free and interative pruning each
having all possible combinations of algorithms
and sparsities between 0.8 and 0.01
- Used model/dataset: LeNet on MNIST
- Presentation of first results:
– observations: up to 90% sparsity not
difference between approaches, LTH baseline best
as expected,
interesting at high sparsities
where combinations yield
notably different results

03/05/2022 Prof. Dr. Thilo Stadelmann, Dr. Claus
Horn, Urban Lutz, Alexandre Manai

- Updates on experiments:
– access to new Harware
– 50/50 finished and analysed
– 90/10 split finished but not yet analysed
– ResNet with Cifar-10 tried but took too long
- New ideas:
– looking at ensemble and vertical combinations
– Detect correlations in clusters of pruned/unpruned weights
– best weights for all approaches
– try start every algorithm with same init

10/05/2022 Prof. Dr. Thilo Stadelmann, Dr. Claus
Horn, Urban Lutz

- Emergency meeting because not conclusive results
- Came to idea of coming up
with own pruning algo
based on finding of bimodal
distribution in good results
- Start of writing the thesis:
– Abstract, Introduction
- Also looking into:
– metric of Trainability and Performance
– Change in weight over time
- Generalization over different tasks
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Date Attendees Notes

17/05/2022 Prof. Dr. Thilo Stadelmann, Dr. Claus
Horn, Urban Lutz, Alexandre Manai

- No conclusive results thus:
– reframing of work to identify low hanging fruits
– try find a combination that is just a tiny bit better
– Non conclusive is a conclusion
- Structure of written thesis:
– fuse related work and theoretical foundations

31/05/2022 Prof. Dr. Thilo Stadelmann, Urban
Lutz, Alexandre Manai

- Structural questions to written thesis:
– Difference between Research question
and hypothesis (they are the same)
– Related Work and Foundations (fuse together)
– what is important for appendix
and project management?
(everything that was tried out
but not relevant to the
thesis anymore and specifications
on algos or test results)
– Need a german abstract? (yes)
git repo and data where
do we hand them in? (send to pascal sager)
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Original Task

See subsequent pages
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