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Abstract—Foundation models are currently leading to a
paradigm shift in artificial intelligence (AI) from models that
have been trained on broad data and can be adapted to many
downstream tasks. This work applies the paradigm of pretraining
with a pre-text task and building problem-specific adapters
for various downstream tasks based on echocardiography input
images with Low-Rank Adaptation (LoRA). The interpretation
of echocardiography images remains challenging and relies on
expert knowledge, highlighting an opportunity for AI to ex-
tract quantitative information for clinical decision-making. LoRA
enables fine-tuning of task-specific parameters while retaining
the full capacity of the pretrained model. For this purpose,
Segformer, a transformer-based architecture, is pretrained on
the EchoNet-Dynamic dataset and serves as the backbone for
our adapter. Segformer shows an accurate segmentation of the
left ventricle with a dice of 0.926. The adapter with LoRA
outperforms a fully trained convolutional neural network (CNN)
in cardiac ultrasound view classification with an accuracy of
0.988 and ventricular volume regression with an MAE of 19.622
in the CAMUS dataset. In left ventricle segmentation, the adapter
exceeds the performance of a fully trained Segformer MiT-B0 and
MiT-B2 architecture with a dice of 0.897. For age determination,
the associated adapter could not outperform a fully trained CNN
with an MAE of 14.627.

Index Terms—Artificial intelligence, Echocardiography, Se-
mantic segmentation, Deep learning, Transfer learning

I. INTRODUCTION

Cardiovascular disease (CVD) is the most common cause of
death worldwide. It covers a wide array of disorders, including
diseases of the cardiac muscle and the vascular system such
as coronary heart disease, cerebrovascular disease, rheumatic
heart disease and other conditions. Identifying patients with a
high risk for a CVD can prevent one from death. [1]–[3]

Failures in the left ventricle in particular would likely
result in impairment of all other organ systems. The left
ventricle is a part of the cardiovascular system that pumps
oxygenated blood through the aortic valve to the entire body
by contraction. Almost one in five people are affected by left
ventricular hypertrophy (LVH), an overworking heart due to
arterial hypertension. Left untreated, it impairs left ventricular
diastolic function and increases the risk of serious heart disease
or even death. [4]

Echocardiography, also known as cardiac ultrasound, is a
non-invasive and harmless assessment modality to assess the
functionality of the left ventricle in real-time. Echocardiog-
raphy produces images of the heart called echocardiogram

Figure 1. Each adapter consists of the same frozen pretrained model with
task-specific LoRA weights and a problem-specific neural network.

using sound waves. An image gets reconstructed based on the
echoes from the high-frequency sound waves emitted by the
transducer and provides information about the heart structures
at work. [5]

Left ventricular ejection fraction (LVEF), the ratio of change
in the left ventricular end-systolic (ESV) and end-diastolic vol-
umes (EDV), is the central measure of left ventricular systolic
function and to evaluate the cardiac contractility. Echocardiog-
raphy information like LVEF is not only helpful for diagnosing
the severity of CVD but also for determining the treatment
strategy, prognosis, and treatment response evaluation. The
calculation of parameters requires experienced practitioners to
recognize even less common or subtly manifesting disorders,
a challenge that automated image processing seeks to address
by extracting quantitative measures. [6], [7]

The biplane method of disks (modified Simpson’s rule) two-
dimensional echocardiography method allows the assessment
of LVEF. Compared to other methods, it relies less on geo-
metric assumptions, since its calculation combines the apical
four-chamber view and two-chamber view. To measure the
LV volume the endocardial border is traced in both views.
Then, the LV cavity is divided into a predetermined number
of disks (usually 20) of the same height. The LV volume
is obtained by summing up the disk volumes. This allows
to further compute important measurement variables such as
stroke volume SV = EDV − ESV and ejection fraction
LV EF = EDV−ESV

EDV ⋆ 100. [6]
Convolutional neural network (CNN), a deep learning ar-



chitectures, achieve accurate segmentation on medical images
[8], [9]. However, recent advances with transformers (Vaswani
et al. 2017 [10]) have shown promising results in computer
vision tasks.

At present, the field of AI is undergoing a paradigm shift
from models trained on broad data, called foundation models,
which can be adapted to a wide range of downstream tasks.
Their scale results in new emergent capabilities due to their
implicitly induced behavior. Segmentation foundation models
like Segment Anything (SAM) by Kirillov et al. (2023)
[11] offer general-purpose segmentation capabilities, but the
versatility of these models remains challenging due to the
big difference between natural images and medical images
[12]–[15].

Low-Rank Adaptation (LoRA) by Hu et al. (2021) [16] is
a fine-tuning technique that has brought huge success in task-
specific language models (LMs). This allows the model to
acquire new skills or improve existing ones. LoRA is based on
the hypothesis that the change in weights during fine-tuning
has a low intrinsic rank. A low rank, the maximal number
of linearly independent rows or columns of a matrix, means
that it can be approximated by a small number of linearly
independent columns. Linearly independent columns or rows
are vectors that cannot be written as a linear combination of
the others. Even a high-dimensional matrix can have a small
rank caused by redundancy and therefore be represented by a
linear combination of other columns. [16]

LoRA freezes the weights of the pretrained (foundation)
model and injects trainable rank decomposition matrices into
each layer of the transformer architecture. As a result, the
model with LoRA retains the full capacity of the pretrained
model and adds task-specific parameters across all transformer
blocks using a fraction of the parameters of the pretrained
model, resulting in less trainable parameters for the specific
downstream task. A high-dimensional matrix can be repre-
sented as a product of two lower-dimensional matrices with
rank decomposition. This way it is not necessary to retrain
the entire model like in conventional fine-tuning methods.
The results have shown that LoRA performs better than
fine-tuned models although the fewer trainable parameters.
The advantages are not only efficiency and lower hardware
requirements but also that a pretrained model can be shared
for multiple tasks by having multiple LoRA modules. [16]

Since the publication of LoRA in 2021 there have been new
adaptations to the original method to make it more memory
efficient based on quantization. However, the basic concept
has not changed. [17], [18]

Wu et al. (2023) [19] evaluated the effect of LoRA on
17 medical image segmentation tasks across various image
modalities, finding that LoRA fine-tuned models surpassed the
performance of the traditional SAM and other state-of-the-art
(SOTA) methods. Zhao et al. (2024) [20] presented with LoRA
Land a web application with 25 task-specific LoRA fine-tuned
Mistral-7B LLMs. Aside from the performance increase, the
fact that it runs on a single NVIDIA A100 GPU with 80GB
memory proves the cost effectiveness of employing multiple

specialized LLMs over a single general-purpose LLM.
In this work, the author uses LoRA to adapt a pretrained

model to semantic segmentation, image classification, and re-
gression based on echocardiography input images. Specifically,
the adapters aim to segment the left ventricle, classify the
cardiac ultrasound view, and predict the patient’s age along
with the end-systolic and end-diastolic volume.

The main contribution is i) a custom pretraining of a
transformer-based segmentation model, ii) the implementation
and training of problem-specific adapters that leverage the
pretrained model’s prior knowledge for various tasks with
LoRA, iii) the evaluation of these adapters on a second,
lower quality dataset to assess their applicability to different
downstream tasks, and iv) an investigation of the impact of
the LoRA rank and different decompositions of the pretrained
model on adapter performance.

II. METHODS

The adapter with LoRA consists of a pretrained model as
a backbone and a task-specific head. The transformer-based
architecture Segformer by Xie et al. (2021) [21] is used for the
pretrained model. Segformer includes a hierarchically struc-
tured transformer-based encoder that generates high-resolution
coarse features and low-resolution fine features, as well as
a multilayer perceptron (MLP) decoder. Compared to the
vision transformer (ViT) for image classification proposed by
Dosovitskiy et al. [22], Segformer does not need positional
encoding to describe patch location information. This makes
it possible that test resolution and training resolution do not
have to match without interpolating the positional encoding. In
Segformer a combination of depth-wise convolution and MLP
called Mix-FFN Layer provides the positional information for
the transformer. [21]

Similarly to ViT the input image of size H×W×Nchannels,
where Nchannels equals 3 for RGB or 1 for grayscale images,
is converted into patches and fed to the encoder. However,
in a Segformer architecture, overlapping patches preserve the
local continuity around these patches. Hence, a kernel size of
7 (equal to the patch size), a stride of 4 and a padding of 3 are
applied for stage 1 and a kernel size of 3, a stride of 2 and a
padding of 1 are used for stage 2 to stage 4, resulting in 16’384
Patches for stage 1 or 65’536 patches for stage 2 to stage 4
with an input size of 512. Patch merging allows a hierarchical
feature map Fi with a resolution of H

2i+1 × W
2i+1 ×Ci where i ∈

1, 2, 3, 4 are the 4 stages and Ci the embedding dimension. To
improve the computational bottleneck, the authors introduced
a reduction ratio R to reduce the length of the sequence of
key K in the self-attention layer called efficient self-attention.
Mix Transformer encoders (MiT, Mix-FFN and efficient self-
attention) MiT-B0 to MiT-B5 have the same architecture but
different sizes of complexity. [21]

The All-MLP decoder aggregates the information from the
different encoder stages and so combines both local and global
attention to create a comprehensive representation. The key
to enabling such a simple decoder is that our hierarchical
transformer encoder has a larger effective receptive field (ERF)



than traditional CNN encoders. First, the decoder unifies the
multiscale feature outputs of the encoder to the same channel
dimension. The features are then upsampled to H

4 × W
4 × C,

where C is the unified channel dimension. The features are
then concatenated and fused to 1/4th of the channel dimension.
Finally, the segmentation mask of size H

4 × W
4 × Nclasses,

where Nclasses is the number of classes, is predicted, and
the prediction is interpolated to the input size. To reduce
the complexity of the model, convolution layers are also
implemented, which can be activated as hyperparameters to
replace the original MLPs. [21]

The Segformer was pretrained on segmentation of the left
ventricle using the EchoNet-Dynamic dataset, which contains
10’030 two-dimensional apical four-chamber echocardiogram
videos in grayscale, each from a unique individual. The videos
are randomly split into 7’465 for training, 1’277 for validation
and 1’288 for testing. In each video, cardiologists labeled one
frame for end-systole and one frame for end-diastole.

The CAMUS dataset (Cardiac Acquisitions for Multi-
structure Ultrasound Segmentation) is used to evaluate the per-
formance of LoRA adapters. It contains 2D echocardiographic
images with two and four-chamber views of 500 patients
including annotations for the left ventricle endocardium, the
myocardium and the left atrium. The quality of the images
ranges from wide variability to the fact that there was no pre-
selection and should reflect clinical realism. The challenges are
the different settings of acquisition, occlusions, and changes
in the cardiac ultrasound view. The voxel spacing, which
indicates the physical space for one pixel, is equal in all input
images and can be ignored in tasks like regression. [8]

To create adapters for different tasks with LoRA we used
LoraConfig from Parameter-Efficient Fine-Tuning (PEFT) by
Huggingface. This library allows us to efficiently adapt our
pretrained custom model to various downstream applications.
In addition, it enables us to tune multiple hyperparameters. The
most important ones among all are rank to set the rank of the
decomposition matrix, target modules to define the modules
where LoRA should be injected and modules to save to set
the trainable layers without LoRA.

To reduce the risk of human clerical mistakes, we create
a LoRA adapter for the regression of the left ventricular
EDV and ESV. When preprocessing the CAMUS dataset, the
calculated LVEF is compared with the one from the dataset
for a self-check whether ESV and EDV have been calculated
correctly.

The adapters aim to make use of the comprehensive
pretraining on the qualitatively higher and larger dataset.
Therefore, one adapter is for the segmentation to perform a
classic transfer learning on the CAMUS dataset. In this case,
pretraining and fine-tuning are related problems. So, a third
classification adapter should show the effect for another non-
related task. This adapter attempts to classify whether it is
an apical four-chamber view or a two-chamber view, which
is supposed to help cardiologists acquire well-recognizable
echocardiography images.

Controversial statements exist in echocardiographic studies

for age-related cardiac values ranging from increase, in par-
ticular in women, to lack of statistical difference or linear
correlation in LVEF with advancing age. Data obtained in a
study show that RVEF and LVEF in children with normal
hearts are similar to those in adults with normal cardiovascular
systems, with an EF approximately in the range of 55% to
75%. The CAMUS dataset shows similar LVEF for all ages
of patients. (see Figure 2) [23]–[26]

Figure 2. EF data with corresponding linear trend and residual standard error
for each age of patients from the CAMUS dataset.

According to studies, ESV and EDV should decrease with
advanced age, which implies increased EF. However, this
effect is also not clearly reflected in the CAMUS dataset.
The large standard deviation indicates that the observed data
show a large variance around the mean volume for certain
age groups of patients. Figure 3 shows many outliers with a
higher volume than the median of 50 for ESV and 92.5 for
EDV, which is also confirmed by a boxplot. [25]

Figure 3. ESV and EDV data with corresponding linear trend and residual
standard error for each age of patients from the CAMUS dataset.

Heart age and the resulting heart age gap are another
metric to communicate a risk to a patient that is easy for
the patient to understand. For the reasons mentioned, it is
difficult to determine age directly using the EF, EDV, and ESV
values. Therefore, in this paper we propose another adapter for
age determination based on echocardiography input images.
Regression of age is still difficult because the CAMUS dataset
is biased towards older patients with a median of 67 years and
only 94 patients with an EF between 55% and 75% are left.



III. RESULTS

To compare the performance of the Segformer architecture,
a UNet model, a successful architecture for a wide range of
medical applications, is used as a baseline. The Segformer
architecture outperforms the UNet on the EchoNet-Dynamic
dataset, achieving a dice of 0.917 with a dice of 0.924 without
having applied much hyperparameter tuning and augmentation
techniques. After only 20 training epochs in 20 training
hours, a dice of 0.926 could already be achieved with an
elastic transformation. As there are no signs of overfitting,
the result could be improved by longer training. Replacing the
convolutional layers with linear layers in the embedding layer,
the transformer layers or mask prediction layers do not gain
any improvement. With MiT-B2, a more complex Segformer
architecture, we achieve a similar dice of 0.925.

In this work, post-processing strategies such as connected
component analysis or computer vision techniques like open-
ing or closing are not used to further improve the performance,
since the focus of this work is on the feasibility of task-specific
adapters with LoRA. For the same reason, preprocessing is
also kept to a minimum, such as input normalization. To
overcome the challenge of different side ratios and sizes of
input images, a center crop is applied to get the same side
ratios and afterwards the images are resized to the same size.

In order to compare the results with the authors of the CA-
MUS dataset Leclerc et al. (2019) [8], all image qualities were
used for training, were tested once with all image qualities and
once without poor image quality. This corresponds to around
19% of images with poor quality and in absolute numbers to
10 out of 50 test images.

Apart from the hyperparameters i) batch size, ii) learning
rate and iii) criterion, the author also does some experiments
with the iv) composition of the adapter, v) different pretrained
model complexities, and vi) different rank sizes. Playing with
the composition of the adapter is an attempt to find out whether
the entire pretrained model has an effect as a backbone or
whether the encoder alone is sufficient.

It should be noted that the training time takes 30 minutes
to load the data, which was not deducted from the training
time. Training the problem-specific adapter head alone is the
fastest method in all cases, which was to be expected, as all
adapters consist of LoRA weights and the problem-specific
adapter head. In addition, a LoRA rank of 1 is too low, and a
rank of 8 is too high in all scenarios. Some experiments work
best with a learning rate scheduler where cosine annealing was
used. In 3 of the 4 problems, the adapter with LoRA weights
could outperform the fully trained adapter head.

A. Classification for the cardiac ultrasound view

The problem-specific adapter head is a CNN with 2d
convolution followed by batch norm, ReLU activation, dropout
layer, and MaxPooling for 32, 64 and 128 hidden dimensions.
In the fully connected network, ReLU is also used as the
activation function, followed by a dropout layer for 1024, 512,
and 256 hidden dimensions. Cross-entropy loss was used for

the criterion and Adam for the optimizer. All experiments are
trained over 200 epochs.

The adapter with LoRA outperformed the fully trained
adapter head with an accuracy of 0.988 on the test images
without poor image quality. In addition, the author tested
whether the fully connected network is complex enough to
classify the cardiac ultrasound view. The fully connected
network with the full Segformer architecture as backbone
outperformed the fully trained adapter head, but not all CNN
adapter heads. The segmentation weights of the Segformer
provide further useful information for classification. No im-
provement could be achieved with the more complex MiT-B2
architecture. The results were better when the LoRA weights
were injected into all layers instead of just to the self-attention
layers. (see Table I)

B. Regression for the ventricular volume

The problem-specific head is also a CNN and consists of
a 2d convolution followed by batch norm, ReLU activation,
and MaxPooling for 32, 64 and 128 hidden dimensions.
Dropout was not beneficial for this problem. Huber loss, which
combines the advantages of L1 loss and mean squared error
(MSE) loss, was used as a criterion. All experiments are
trained over 100 epochs with an Adam optimizer.

For this problem, the adapters with the LoRA weights
outperform the fully trained adapter head as well. In addition,
performance could be further improved with the MiT-B2
encoder architecture as backbone and LoRA weights only to
the self-attention layers. (see Table II)

Figure 4 shows that the adapter produces biased predictions
with R2 of 0.75, resulting in overestimates for smaller vol-
umes, as is the case with ESV, and underestimates for larger
volumes, in the case of EDV.

Figure 4. Evaluation of the test prediction of the LoRA adapter with the
MiT-B2 backbone and LoRA weights injected into the self-attention layers.

C. Regression for the age

Regression for the age uses the same problem-specific
adapter head, criterion, optimizer, batch size, and number
of epochs as regression of ventricular volume. The only
difference turned out to be the learning rate. The experiments
worked best with a learning rate of 0.01.

For age determination, the LoRA adapters come close, but
cannot outperform the fully trained adapter head. The MiT-B2



architecture does not have any improving effect in this case.
For this problem, it worked better if the LoRA weights were
injected only into the self-attention layer. (see Table III)

The test results of the best performing adapter reveals a
bias with R2 of 0.18, overestimating outcomes for younger
ages and underestimating them for higher ages. The adapter
predicts almost constant values that deviate from the mean of
65 years. (see Figure 5)

Figure 5. Evaluation of the test prediction of the best performing LoRA
adapter with the full MiT-B0 pretrained model as backbone and LoRA weights
injected into the self-attention layers.

D. Left ventricle segmentation

For the left ventricle segmentation, the Segformer decoder
is used for the problem-specific adapter head with the only
difference that concatenation and upsampling to a fourth of the
input size is already done in the backbone. The experiments
are trained over 100 epochs with cross-entropy loss and Adam
optimizer.

The LoRA weights contribute to increased segmentation
performance and slightly exceed the performance of the fully
trained Segformer with MiT-B0 and MiT-B2 architecture. MiT-
B2 for the pretrained model does not have an improving effect.
For segmentation, it makes less of a difference whether the
Lora weights are injected into all layers or only into the self-
attention layers. Although only a fraction of the parameters
of the pretrained model are trained, fine-tuning with Lora is
slower than fully training a MiT-B0. (see Table IV)

The test results show that the majority of good results still
have a few deviations at the edge of the chamber compared
to the labels. The two of the three poorer results show that
the labeled mask could not be interpreted correctly, resulting
in grid-like lines in the mask. This could be improved using
computer vision techniques. The worst segmentation result can
be related to the abnormal shape of the left ventricle. (see
Figure 6)

IV. DISCUSSION

This work utilized the paradigm of pretraining with a pre-
text task, followed by developing problem-specific adapters
using LoRA to address semantic segmentation, regression and
classification tasks based on echocardiography input images.
The results have shown that although the adapter with LoRA
could keep up with the fully trained Segformer the overall

Figure 6. The 3 best and 3 worst test results from the segmentation adapter
with LoRA.

performance with a dice of 0.897 could be improved, as
demonstrated by Leclerc et al. [8]. At the edge of the ventricle,
there are still slight deviations between the labels and the test
results. The results obtained must be analyzed with an expert
and compared with the labels to determine further steps. In
addition, an interrater agreement could put the results into



Table I
RESULTS FOR THE CLASSIFICATION ADAPTER

Experiment layers with rank learning rate test accuracy trainable params total params training time
LoRA weights with poor no poor [min]

images images
backbone of MiT-B0 all 2 0.001 0.97 0.981 35’362’308 99’085’766 126
backbone of MiT-B0 all 4 0.001 0.965 0.962 36’124’774 99’848’232 123
backbone of MiT-B0 self-attention only 4 0.001 0.95 0.956 35’826’594 99’550’052 75

full MiT-B0d all 4 0.001 0.985 0.988 136’412’550 300’681’058 137
full MiT-B0 self-attention only 4 0.001 0.955 0.956 539’112’164 1’106’121’192 109

backbone of MiT-B2b all 4 0.001 0.955 0.962 39’758’950 265’848’840 409.5
backbone of MiT-B2b self-attention only 4 0.001 0.93 0.956 38’659’490 264’749’380 191.5

full MiT-B0 with FCN only all 4 0.001 0.97 0.981 1’531’084 568’446’704 129.5
full MiT-B0 with FCN only self-attention only 4 0.001 0.93 0.944 1’490’178 568’405’798 80

fully train adapter headc no LoRA - 0.001 0.895 0.931 537’621’698 537’621’698 60.5
a “to” refers to a cosine anealing scheduler from the first-mentioned learning rate to the second-mentioned learning rate.
b Best performance with a batch size of 16 instead of 32
c Best performance with a batch size of 64 instead of 32
d Best performance with less complex adapter head with only 8, 16 and 32 hidden dimensions

Table II
RESULTS FOR THE VENTRICULAR VOLUME REGRESSION ADAPTER

Experiment layers with rank learning rate test mae trainable params total params training time
LoRA weights with poor no poor [min]

images images
backbone of MiT-B0 all 4 0.001 to 0.0001a 32.88 30.255 71’122’789 169’844’262 99.5
backbone of MiT-B0 self-attention only 2 0.001 24.613 22.304 70’211’233 168’932’706 74.5
backbone of MiT-B0 self-attention only 4 0.001 23.98 22.27 70’824’609 169’546’082 71.5

full MiT-B0 all 4 0.001 to 0.0001a 29.963 26.988 1’077’467’565 2’182’791’088 155.5
full MiT-B0 self-attention only 4 0.001 25.701 23.401 1’077’426’659 2’182’750’182 127.5

backbone of MiT-B2 all 4 0.001 52.442 52.35 74’756’965 335’844’870 269
backbone of MiT-B2 self-attention only 4 0.001 to 0.0001a 23.458 19.622 73’657’505 334’745’410 184

fully train adapter headb no LoRA - 0.001 to 0.0001a 29.208 26.047 1’075’936’193 1’075’936’193 47
a “to” refers to a cosine anealing scheduler from the first-mentioned learning rate to the second-mentioned learning rate.
b Best performance with a batch size of 64 instead of 8

Table III
RESULTS FOR THE AGE REGRESSION ADAPTER

Experiment layers with rank learning rate test mae trainable params total params training time
LoRA weights with poor no poor [min]

images images
backbone of MiT-B0 all 4 0.01 39.098 39.114 71’122’789 169’844’262 98.5
backbone of MiT-B0 self-attention only 2 0.01 15.332 14.627 70’211’233 168’932’706 73
backbone of MiT-B0 self-attention only 4 0.01 15.27 14.741 70’824’609 169’546’082 73.5

full MiT-B0b all 4 0.01 45.45 45.532 539’152’813 1’106’161’584 153.5
full MiT-B0 self-attention only 4 0.001 15.385 14.717 1’077’426’659 2’182’750’182 127.5

backbone of MiT-B2 self-attention only 4 0.01 16.233 15.458 73’657’505 334’745’410 183
backbone of MiT-B2 all 4 0.01 23.649 23.56 74’756’965 335’844’870 266

fully train adapter head no LoRA - 0.001 13.83 13.484 1’075’936’193 1’075’936’193 64
a “to” refers to a cosine anealing scheduler from the first-mentioned learning rate to the second-mentioned learning rate.
b Best performance with dropout layers



Table IV
RESULTS FOR THE SEGMENTATION ADAPTER

Experiment layers with rank learning rate test dice trainable params total params training time
LoRA weights with poor no poor [min]

images images
backbone of MiT-B0 all 2 0.0001 to 0.00001a 0.89 0.897 1’025’892 30’412’934 81.5
backbone of MiT-B0 all 4 0.0001 to 0.00001a 0.891 0.896 1’788’358 31’175’400 82.5

backbone of MiT-B0b self-attention only 4 0.01 to 0.00001a 0.876 0.885 1’490’178 30’877’220 79.5
backbone of MiT-B2c self-attention only 4 0.01 to 0.00001a 0.879 0.885 4’815’874 197’062’148 146.5
backbone of MiT-B2c all 4 0.0001 to 0.00001a 0.891 0.897 5’915’334 198’161’608 233.5

fully train MiT-B0 no LoRA - 0.001 to 0.0001a 0.883 0.89 29’387’042 29’387’042 70.5
fully train MiT-B2c no LoRA - 0.001 to 0.0001a 0.881 0.887 192’246’274 192’246’274 200.5

a “to” refers to a cosine anealing scheduler from the first-mentioned learning rate to the second-mentioned learning rate.
b Best performance with a batch size of 8 instead of 32
c Best performance with a batch size of 16 instead of 32

context. Classification seems to be a suitable problem for
adapters with LoRA and achieved good performance with
an accuracy of 0.988. With volume regression, an MAE of
19.622 was achieved, but the test results show a bias so that
smaller volumes are overestimated and larger volumes are
underestimated. A further step would be to investigate whether
performance could be improved by training the regression
of EDV and ESV as individual tasks. Currently, no gender
or age information is included in the volume determination.
This would have to be assessed for possible improvement. In
age determination, the fully trained problem-specific network
could not be outperformed but came close to the values. How-
ever, when examining the test results, it becomes apparent that
constant values tend to be predicted and that lower ages are
significantly overestimated and higher ages are significantly
underestimated. For this regression problem, it would make
more sense to have a dataset with more healthy patients,
as we would like to estimate the heart age based on the
assumption that the patient is healthy. Adapters with LoRA
seem to be a suitable method for applications with small
datasets. The performance achieved with the LoRA adapters
on the echocardiography images would have to be examined
in a further clinical analysis from a prospective study.

V. CONCLUSION

In this work, the author has used the paradigm shift in
AI from models trained on broad data that can be adapted
to various downstream tasks. The paradigm of pretraining
with a pre-text task and building problem-specific adapters
for different downstream tasks was applied with LoRA. It
was shown that LoRA could be used to adapt a pretrained
model for semantic segmentation, image classification, and re-
gression based on echocardiography input image. In addition,
Segformer has been shown to provide accurate segmentation
results for echocardiography images.

Heart failure with preserved ejection fraction (HFpEF) is
common among heart failure patients, for example from a
disease such as arterial hypertension. Approximately 50% of
patients with heart failure are classified as HFpEF. This is only

one reason why it is important to examine as many factors as
possible from the echocardiographic data. [27], [28]

Currently, only two frames for end-diastole and end-systole
have been taken from each of the videos for pretraining.
This means that a lot of information from the videos has
not yet been included in the training. For this reason, the
performance of the pretrained model could be further improved
by a self-supervised technique such as DINO [29]. This way,
the model can learn representations from unlabeled data with
self-distillation.

The next step is not only to implement more adapters,
but also to evaluate the entire video to detect abnormalities
over time. The CAMUS dataset is not suitable for automated
labeling of the end-diastolic and end-systolic time points, as
only the smallest respectively biggest volume was included,
and any presence of abnormalities was not considered.
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