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Abstract

Recent advances in artificial intelligence (AI) have boosted progress across various
domains, particularly enabling breakthroughs in the discipline of Natural Language-
Instructed Autonomous Agents for Computer Control (A2C2s). Due to their capa-
bilities of understanding natural language and executing actions the same way a hu-
man would, these agents have the potential to significantly simplify human-machine
interaction, reduce resource requirements in business, and empower non-technical
users to operate computer systems effortlessly.
This thesis aims to provide an overview of the vast yet fragmented research land-
scape of A2C2s, enabling further innovation. Through a comprehensive literature
review, existing agents and their capabilities were identified, summarized, catego-
rized, and analyzed to extract potentials and challenges.
The result is a detailed taxonomy, likened to an archipelago, encompassing providing
information to the agent, refining skills and building knowledge, ensuring task comprehen-
sibility, debating and refining subtasks and interacting with the environment. Besides
reviewing existing work, this thesis offers an analysis of pinnacle agents with foun-
dational A2C2 skills and proposes a novel architecture for a comprehensive A2C2
that leverages the identified strengths. The findings suggest that an A2C2 must be
able to decompose and structure user and system input and compare and reason
plans in a closed loop. Consequently, state-of-the-art A2C2s utilize large foundation
models because of their solid planning and image comprehension capabilities.
Promising progress in AI highlights strengths in general reasoning and image de-
scription. Key challenges include specializing these strengths for A2C2s, specifically
reducing possible actions, decomposing instructions, and refining plans. Address-
ing these issues, along with considerations for security, performance, and personal-
ization, is essential for future research.

Keywords: A2C2, Artificial Intelligence, Autonomous Agent, Computer Control,
Multitask Reasoning, Natural Language Processing, Task Decomposition, Vision
Language Model
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Chapter 1

Introduction

Throughout evolution, humans have used tools to survive, and improve their problem-
solving skills (Gregersen, 2019). Over time, these tools have become more sophis-
ticated, enabling them to overcome challenges thought impossible (Garza-Herrera,
2024). Artificial intelligence (AI) has been established as a new tool for humans since
the 1950s, due to the presentation of the Turing-Test (Turing, 1950) for the develop-
ment of intelligent machines, and the 1956 Dartmouth Symposium, at which AI was
officially introduced. The advancements in AI, from the expert systems of the 1980s
and the neural networks of the 1990s to the deep neural networks of recent times,
have greatly simplified many human tasks (Haenlein & Kaplan, 2019).

Recently advances in foundation models (see section 2.4) for different data types –
image, text and audio – have brought AI to the forefront, with the potential to trans-
form many facets of human life in the future (De Angelis et al., 2023; Larsen &
Narayan, 2023). These technologies facilitate applications that make everyday life
easier (Daley, 2024) such as movie recommendations and voice assistants but also com-
plex systems with critical applications such as autonomous driving and diagnostics in
medicine.

One of the latest developments is using AI to automate tasks on a personal com-
puter, particularly for non-technical users (henceforth referred to as computer sys-
tem). Therefore a Natural Language-Instructed Autonomous Agent for Computer
Control (henceforth referred to as A2C2) is of fundamental importance. This agent,
which operates through keyboard, mouse, or touchscreen interfaces, mimics human
interaction on graphical user interfaces (GUIs) and receives instructions in natural
language. The potential of this technology lies in simplifying the interaction be-
tween humans and machines, reducing resource requirements in various business
sectors, and ultimately empowering non-technical users to master the operation of
computer systems effortlessly. However, autonomous interaction with computer
systems poses complex challenges. While human reasoning offers the advantage of
generalizability by gaining independence from domain restrictions, its complexity
also presents unsolved hurdles. As shown in previous research (see chapter 4), it
is all the more difficult if the agent has to imitate human interaction capabilities,
specifically the IO peripherals as action space and the GUI as observation space.

The field of A2C2s is a highly discussed and important topic in AI research, which
has already resulted in significant progress (Shaw et al., 2023; Tan et al., 2024; team
rabbit research, 2023; L. Zheng et al., 2023). The number of scientific publications
and software projects with various approaches is increasing weekly.
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Each approach has its strengths, limitations, and areas of application. However, this
rapid growth leads to a fragmented landscape in the field of A2C2s.

Problem Statement

The primary objective of this thesis is to provide a comprehensive survey to or-
ganize the fragmented research landscape in a simple and meaningful way. The
resulting survey is intended to be used as a reference point for further research.

In particular, the following questions will be addressed:

• What does the research landscape look like, and how can it be categorized to
gain a clear and valuable overview?

• What are the strengths and potentials of existing systems, and how can they
be exploited?

• Which challenges are known to be unsolved and could lead to breakthroughs
in the field if solved?

• What does the look like proposed system, based on well-founded knowledge
in this field and ideally representing a further step towards A2C2?

The scope of this proposal is limited to agents that receive a natural language in-
struction and a pixel-based representation of the GUI as input and can operate both
business and commercial software with a keyboard, mouse, and touchscreen. For
the survey part of the thesis, the scope of the input as well as the possible operations
is extended to represent the whole research landscape.
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Chapter 2

Foundation

This chapter is designed to help understand the basic concepts underlying an A2C2.
Furthermore, it provides a real-world example that demonstrates how the agent
could simplify the interaction between a user and a computer system.

2.1 Previously on A2C2

FIGURE 2.1: An illustration of the summed agents for computer
control over time, distincted between three approaches reinforcement
learning, language model and multimodal model. As reference the publi-
cation dates of ChatGPT (openAI, 2022) and GPT-4V(ision) (openAI,
2023) are visually highlighted in yellow and show a correlation to the
increase of agents. In addition, the pinnacle methods (Shaw et al.,
2023; Tan et al., 2024; team rabbit research, 2023; L. Zheng et al., 2023)
presented in chapter 5 highlighted in green, as well as other agents
are distributed over the time axis (Humphreys et al., 2022; Jia et al.,
2019; Y. Li et al., 2020; Niu et al., 2024; Shvo et al., 2021; H. Sun et al.,

2023; L. Sun et al., 2022; L. Wang et al., 2024).

As Figure 2.1 shows, the development of an agent for computer control and its im-
pact by new milestones like ChatGPT (openAI, 2022) and GPT-4V(ision) (openAI,
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2023). It can be divided into the following three distinct phases:

Before 2020: Reinforcement learning (RL) (see section 2.2) was widely applied driven
by advancements in deep Q-networks (DQN) and proximal policy optimization, as
well as its effectiveness in learning from interaction with an environment.

From 2020 until 2023: There was a shift from pure RL to large language models
(LLM), as natural language processing empowered by transformers (Vaswani et al.,
2017), made great progress and RL showed significant limitations in planning and
reasoning.

From 2023 until present: Increasingly versatile foundation models such as vision
language models (VLM) have been utilized (see section 2.4). These models possess
built-in capabilities to handle various modalities such as text, images, and more,
demonstrating great potential in the reasoning and planning of computer system
tasks.

2.2 Reinforcement Learning

RL is a versatile area of machine learning that focuses on developing optimal poli-
cies for sequential decision problems by optimizing a cumulative future reward. The
agent learns to maximize the expected return through its interactions with the envi-
ronment by identifying the best actions for a given state (Hasselt et al., 2015; Mnih
et al., 2013; Sutton et al., 1999).

The basic RL algorithm is modeled as a Markov Decision Process which is a 4-tuple
of (S, A, P, R) (Bellman, 1957; van Otterlo & Wiering, 2012) where:

• S is the state space

• A is the action space (or As set of actions available from state s)

• p(st + 1|st, at) is the probability that action a for state s in time t leads to s0 in
time t + 1

• Ra(s, s0) is the immediate reward after transitioning s! s0 with action a

The policy – behavior at a given state st – is typically defined as state-to-action mapping
p : S ! A and the objective of the agent is to maximize the cumulative rewards
received over time Est [Rt|st]. The Q-function – the action-value function – is defined
as Qp(st, at) = E[Rt|st] and represents the expected cumulative reward an agent can
get, taking action at in the state st following a specific policy and therefore estimates
the effectiveness of different actions in a state (Chadi & Mousannif, 2023; Hasselt
et al., 2015).



2.3. Reinforcement Learning with Human Feedback 5

Algorithm 1 shows the Q-learning algorithm (Watkins & Dayan, 1992), one of the
basic, classic, and most popular algorithms in the field of RL (Chadi & Mousannif,
2023; Hasselt et al., 2015).

Algorithm 1 Q-Learning Algorithm
1: Initialize:

Q(s, a) random or 0 values
Learning rate a, Discount factor g, Exploration rate e 2 [0, 1]

2: for each episode do
3: Initialize state s
4: for each step in episode do
5: Choose action a using e-greedy policy
6: Take action a
7: Observe reward r and new state s0
8: Q(s, a) Q(s, a) + a (r + g maxa0 Q(s0, a0)�Q(s, a))
9: s s0

10: end for
11: end for

2.3 Reinforcement Learning with Human Feedback

Reinforcement learning with human feedback (RLHF) is an RL approach integrat-
ing human feedback into the learning process to guide the behavior of an agent
(Christiano et al., 2017; Ouyang et al., 2022). This presents a significant advantage in
environments with rewards that are difficult to define or sparse. During training an
agent interacts iteratively with the environment, receiving feedback from humans
– binary, ranking or natural language – on its actions (Christiano et al., 2017; Suay &
Chernova, 2011; Warnell et al., 2017), which replaces the reward signal of the en-
vironment. The collected feedback is then utilized to update the policy or value
function, aiming to maximize human-goal alignment. Human feedback also helps
in addressing the exploration-exploitation dilemma (Houthooft et al., 2016; Pathak
et al., 2017) by regulating the training direction to human alignment.

However, ensuring the generalization capabilities and robustness of an agent re-
mains a challenge in both basic RL and RLHF. This challenge can be mitigated by
having a thoroughly designed feedback collection process, a diverse data set as well
as a heterogenous human feedback pool.

2.4 Foundation Models

Foundation models like LLM or VLM are large-scale general-purpose models, de-
signed to generate text, image, audio, and other data types. They accomplish this by
training on massive datasets, aiming to demonstrate robust capabilities for unseen
tasks (henceforth referred to as zero-shot). (Dosovitskiy et al., 2020; Jiang et al., 2023;
J. Li et al., 2023; Lu et al., 2023; G. Team et al., 2023; Touvron et al., 2023; Z. Yang
et al., 2023). Their strengths lie in the ability to generalize across domains and data
types, the flexibility to adapt to new tasks with a minimal parameter update, and the
capability to produce high quality outputs (Schneider et al., 2024). Typically founda-
tion models are pre-trained in an unsupervised manner and can then be fine-tuned
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by unfreezing parts of their network weights and retraining on domain-specific data
(see section 4.2).

2.5 Example of a Working A2C2

In this section, we will run through a real-life example to demonstrate how an A2C2
ideally functions, showcasing the complex tasks such an agent should be able to
perform in a computer system to minimize effort for the user. To do this, we have
modeled the agent on the functionality of various state-of-the-art (SOTA) agents.

2.5.1 Specification

• Hila: A software developer in a large company actively involved in the devel-
opment and maintenance of multiple applications.

• ProTime: Working hours and activity recording tool, based on SAP (All41Group,
2024).

• Company Guidelines: All employees must track their working hours and ac-
tivities daily in ProTime. This includes recording the start and end time of the
working day and detailing the projects/issues processed. At the end of each
month, a signature of the user is required, to confirm that all entries have been
made correctly.

• A2C2: A new tool, provided by the company, designed to execute tasks on
computer systems via a chat interface.

2.5.2 Task

At the end of a typical working day, Hila receives a message reminding her to re-
port her work hours and activities in ProTime. However, with other urgent tasks to
complete and the desire to leave work on time, she is not sure if she will be able to
find the time to complete the reporting. Consequently, she relies on the new A2C2
provided by the company and delegates the recording in ProTime to it.

2.5.3 Input

(A) computer system observation

Please record my working hours and activ-
ities on ProTime. For the activities check
assigned GitHub issues and my calendar.
I worked from 0700 to 1700 with a 30min
lunchbreak at noon.

(B) user instruction

FIGURE 2.2: A computer system observation of a Windows desktop
with a A2C2 chat interface open in Figure 2.2 (A) and the correspond-
ing user instruction text in Figure 2.2 (B). Both inputs are necessary

for an agent to assess the current state.
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The A2C2 receives two inputs that are correlated (see Figure 2.2). The first input
Figure 2.2 (A) is a pixel-based representation of the GUI in the form of a screenshot
(see subsection 4.1.2). The second input Figure 2.2 (B) is the raw user instruction in
natural language (see subsection 4.1.1).

2.5.4 Input Decomposition

As a proficient user of computer systems, Hila can intuitively tell that several appli-
cations are involved, namely Calendar, GitHub, and ProTime, and that she currently
observes the desktop. With this knowledge, she can formulate a plan that solves the
instruction.

Acquiring this level of insight is challenging for an agent. To attain similar insights,
the agent needs to decompose the user instruction into manageable subtasks (see
section 4.3) and interpret the screenshot of the GUI (see subsection 4.3.1).

(A) observation with segmentation

MenuBar 0 1016 1918 1078 {
...
Icon 970 1016 1036 1078 "Brave"
Icon 1036 1016 1116 1078 "Outlook"
Icon 1102 1016 1196 1078 "Shell"
...

}
...

(B) observation in pseudo DOM

FIGURE 2.3: The deconstruction of the observation GUI in two differ-
ent forms. Figure 2.3 (A) is decomposing the components of a screen
with bounding boxes, and Figure 2.3 (B) is translating this decompo-
sition to a pseudo-document object model (DOM) providing a struc-

tured representation of the GUI.

In Figure 2.3 a possible deconstruction of the GUI is shown. Atomic components,
which cannot be further subdivided, are denoted by pink bounding boxes in Fig-
ure 2.3 (A). Elements enclosed by purple bounding boxes, such as – the menu bar
and the A2C2 chat interface – contain multiple atomic components. In addition, the
element type and location are identified, and it is determined whether the element
can be described textually in Figure 2.3 (B).

1. Open Browser
2. Navigate to

github.com
3. Login into GitHub
4. Click on issues
5. Check open issues
6. Check recently closed

issues

(A) GitHub subtasks

7. Open Outlook
8. Check today’s entries
9. Click on the calendar

(B) calendar subtasks

10. Open ProTime
11. Enter activities
12. Enter time 0700 - 1200
13. Enter time 1230 - 1700
14. Check if signature

required

(C) ProTime subtasks

FIGURE 2.4: A possible decomposition of subtasks in three different
categories. The blue marked text represents opening web apps which

can be a well-known task.
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The user instruction also requires to be broken down into less complex instructions.
Figure 2.4 shows a possible split into three larger tasks, which could potentially be
carried out independently – check GitHub in Figure 2.4 (A), check calendar in Figure 2.4
(B) and make ProTime bookings in Figure 2.4 (C). These tasks can further be divided
into subtasks. At this stage the agent could consolidate an external memory to in-
crease efficiency and reduce variability. Since opening an application is a repetitive
task and likely to be successfully executed before, the subtasks marked blue in Fig-
ure 2.4 (A) can be loaded from memory, ensuring a higher success rate. The GUI
structure and context can also help in the decomposition of user instructions by pro-
viding more insights into the current observation space.

Decomposing an input is not a one-off task, rather it must be repeated after the
execution of each subtask. At this point, the subtasks are presented as a list of sug-
gestions lacking order and validation.

2.5.5 Selection

1. Open Browser
2. Navigate to github.com
3. Login into GitHub
4. Click on issues
5. Check open issues
6. Check recently closed issues
7. Open Outlook
8. Check today’s entries
9. Click on calendar

10. Open ProTime
11. Enter activities
12. Enter time 0700 - 1200
13. Enter time 1230 - 1700
14. Check if signature required

(A) First plan generated by task decomposi-
tion

1. Open Browser
2. Search GitHub in google
3. Click on the first link
4. Click on your profile
5. Click on daily contributions
6. Check today’s contributions
7. Open Outlook
8. Check today’s entries
9. Click on calendar

10. Open ProTime
11. Enter activities
12. Enter time 0700 - 1200
13. Enter time 1230 - 1700
14. Check if signature required

(B) Second plan generated by task decompo-
sition

FIGURE 2.5: Two plans generated by task decomposition with differ-
ent subtasks. The first plan is shown in Figure 2.5 (A) and the seconde
plan is shown in Figure 2.5 (B). Some subtasks are overlapping and

the colored ones highlight different categories of selection.

With the insights from task decomposition, the agent has formulated a plan what
subtasks need to be executed and what options the GUI offers. Next, the agent
must assess the quality of its plan. This is done by potentially reasoning (see sub-
section 4.4.1) the subtask suggestions comparing (see subsection 4.4.2) multiple plans
and validating (see subsection 4.4.3) whether the information provided in the instruc-
tion and observation is sufficient to generate a suitable output.

Multiple plans can be formulated and proposed from the task deconstruction (see
Figure 2.5). These plans may differ in one to many subtasks. The A2C2 should be
capable of deciding which plan is more favourable. To accomplish this, it compares
both plans with the user instruction in Figure 2.2 (B) determining that plan (A) in
Figure 2.5 (A) matches better with subtasks 1 to 6 than plan (B) in Figure 2.5 (B).
Consequently, plan (A) in Figure 2.5 (A) is selected for execution.

During the reasoning about subtasks, the agent has to ensure that the sequence and
structure are logical. It notices that subtasks 8 and 9 are reversed, and that subtask
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11 can only be performed after subtask 13, as entering activities without work hours
makes no sense. The agent identifies and corrects this issue either before executing
the first subtask or in the event of an error during the execution of subtask 11.

For validation, the agent checks whether all necessary information is available and
whether tasks are deemed so critical to require user confirmation. In subtask 3 user
credentials are required, which are not provided by the initial instruction. Addition-
ally, subtask 3 and subtask 14 should be marked as critical tasks, necessitating user
confirmation before execution.

2.5.6 Output

1. CLICK "browser icon"
2. CLICK "address bar"
3. CLICK "sign in"
4. TYPE "username"

"hackerhila"
5. TYPE "password"

"S@fePa$$w0rd"
6. CLICK "issues"
7. CLICK "closed"
8. READ

(A) check GitHub task with
plan and GUI

8. CLICK "Outlook"
9. CLICK "calendar"

10. CLICK "today"
11. CLICK "daily view"
12. READ

(B) check calendar task with
plan and GUI

13. TYPE "win"
14. TYPE "searchfield"

"ProTime"
15. CLICK "ProTime"
16. TYPE "from" "0700"
17. TYPE "to" "1200"
18. TYPE "from" "1230"
19. TYPE "to" "1700"
20. ...

(C) make ProTime bookings
task with plan and GUI

FIGURE 2.6: The three executed subtasks – check GitHub in Figure 2.6
(A), check calendar in Figure 2.6 (B), make ProTime bookings in Figure 2.6

(C) – as well as the GUI representation after executing them.

Figure 2.6 depicts the status after the successful execution of the three subtasks –
check GitHub in Figure 2.6 (A), check calendar in Figure 2.6 (B), make ProTime bookings
in Figure 2.6 (C) – up to enter activities, the subtask number 13 (see Figure 2.5) after
reasoning. In this example, the agent translates the plan to IO peripheral actions –
CLICK, TYPE, READ – and can directly execute them on the computer system.
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With the context provided by GitHub and the calendar, the agent attempts to execute
subtask number 13. After struggling to translate this subtask into IO peripheral
actions or receiving an error as feedback, the agent should realize that this specific
task encompasses multiple subtasks that need to be decomposed. Additionally, it
requires missing information from the user to be executed, such as – What did Hila
do between 10:00 and 12:00? and When did Hila work on task #35?

Armed with new knowledge, the agent should restart the closed loop planning steps
with a new starting point and more context.
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Chapter 3

Methodology

The objective of this chapter is to detail the methodological approach undertaken to
write this thesis and complete the tasks required to answer the questions defined in
section 1.

Literature Search and Review: To illustrate the research landscape, we conduct a
detailed and well-structured literature review. This analysis can be divided into two
phases:

• Initial Search: The first step is to search for relevant publications using in-
dividual search terms Action Transformer, Computer Control, Web Agent, Mul-
timodal Agents, Action Grounding, and Task Reasoning on scientific platforms
namely Google Scholar (Google, 2024), Research Gate (ResearchGate, 2024), IEEE
Xplore (IEEE, 2024) and arXiv.org (arXiv, 2024).

• Follow-up Search: Once the first relevant publications are successfully identi-
fied, the section on related publications and the corresponding references are
used to search for further works.

Summarization: To make the best use of the collected publications and to gain a
deeper understanding of the field of an A2C2, we summarize them. This has to be
done because the difficult task of categorizing first requires comprehensive knowl-
edge of the research area. The summary template was provided by our supervisor
Thilo Stadelmann:

1. Problem tackled/solved
2. Methods/approach used
3. Experimental setup and results
4. Pros when thinking about applying this approach to your problem/task
5. Cons when thinking about applying this approach to your problem/task
6. Useful for working on our problem

Time Management: We restrict the initial literature review to the first eight weeks
enabling us to limit the analyzed publication to the most important ones. A pub-
lication released or discovered after the initial literature review is included after a
thorough inspection of its relevance.

Taxonomy Development: The extensive literature review in combination with or-
ganized summaries will help us to group these approaches based on their similar-
ities and extract a taxonomy for the outline of an A2C2. Due to the complexity of
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the topic, several iterations will be necessary to develop a taxonomy that provides a
structured, clear, and meaningful overview of the research landscape (see chapter 4).
For each of these components of an A2C2, key publications are identified with a spe-
cific focus on their potentials – what makes this paper particularly special and how could
it improve A2C2s? – and challenges – what are unsolved problems of this approach in
regards to A2C2s?

Selected Approaches and System Definition: The next step is to present promis-
ing agents identified in the literature review that potentially point the way to A2C2
(see chapter 5). Finally, based on this understanding and the insights gained, an
architecture is presented that could represent a further step in the development of
A2C2s (see section 5.3). This is done by combining the identified strengths of exist-
ing agents with novel ideas that come from acquiring knowledge about the research
area.

Limitations and Justification: The methodology chosen offers a structured approach
to reviewing the literature and answering the problem statement (see section 1). The
qualitative nature of this thesis enables an in-depth understanding of existing A2C2s
and highlights their potential and limitations. Due to the actuality of the topic, this
thesis is limited to the literature available until the time of completing the thesis.
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Chapter 4

Taxonomy

FIGURE 4.1: First, we look at the input, then learning takes its turn,
Next, we sail to input decomposition, where insights we discern.
We cross the seas to plan refinement, with choices firm and stout,

Until at last, the system’s output is what it is about.
This figure is generated by Ideogram (2023).

As shown in Figure 4.1 the taxonomy of an A2C2 can be compared with an archipelago
where every island has its own strengths and challenges. An agent must be able to
navigate from one island to the next to reach the final destination. We therefore offer
a comprehensive map of the specialized islands, which has emerged from our re-
search, to make the dangerous passage in the waters of A2C2s to an island hopping
vacation. In this chapter, we discuss the individual islands in detail and highlight
insights identified during the research ending each section with a short discussion
and a structured representation of the identified agents (see Figure 4.5, Figure 4.7,
Figure 4.12, Figure 4.14, Figure 4.16). This is done in the same order introduced in
section 2.5.
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4.1 Input - providing information to the agent

FIGURE 4.2: The input island with regard to what the A2C2 receives
as input compared to what Hila sees. Icon of Hila and A2C2 is gener-

ated by Ideogram (2023).

The section below provides a description of the input island. The input corresponds
to what the agent receives from the user and the computer system to solve a desired
task. Figure 4.2 illustrates the comparison of what the agent receives as input and
what the user can see. The Input island represents the starting point for an A2C2 in
the journey through the archipelago and is divided into the instruction space – what
is the user instruction? – and the observation space –what does the agent perceive?

4.1.1 Instruction Space

Example 1: Book my
working hours for to-
day from 7am to 6pm
with 30min lunch at
12pm.
Example 2: Please
book my working
hours for today. I
started work at seven
o’clock am and started
feeling hungry at
around eleven thirty
but kept working un-
til noon. Then I went
for lunch at my fa-
vorite burger joint for
thirty minutes. After
a delicious meal, I had
the strength to con-
tinue working until six
o’clock in the evening.

(A) User instruction
wording

Example 1: Book my
working hours for to-
day from 7 to 6 with
30min lunch at 12.
Example 2: Book my
working hours. Day:
April 20. 2024, Start:
07:00, Lunch:12:00,
Resumption: 12:30,
End:18:00.

(B) User instruction
precision

Example 1: Book my
working hours. Start:
07:00, Lunch: 12:00,
Resumption: 12:30,
End:18:00.
Example 2: Book my
working hours on the
Pro Time app. Day:
April 20. 2024, Start:
07:00, Lunch: 12:00,
Resumption: 12:30,
End: 18:00. I worked
from 07:00 - 12:00 on
the Issue #714 and
from 12:30 on the Is-
sue #182223.

(C) User instruction com-
pleteness

FIGURE 4.3: The different user instruction examples for wording in
Figure 4.3 (A), precision in Figure 4.3 (B) and completeness in Fig-

ure 4.3 (C).
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As discussed in the introduction (see chapter 1), the user input is scoped to natu-
ral language. Despite this constraint, instructions can vary significantly in wording,
precision, and completeness (see Figure 4.3). Depending on how a user instruction
is presented to the agent, a task may be more challenging to solve. The more diffi-
cult the user instruction is, the more iterations over the agent are typically required
for successful execution. This difficulty is increased by incomplete instructions, irrel-
evant information, unstructured text, and various other factors. The planning process
encompasses all the steps outlined in the subsequent taxonomy that can be sequen-
tially executed to obtain an output.

4.1.2 Observation Space

(A) pixel representation (B) DOM representation

[Computer System Input]: The screenshot appears to be
from a mobile application rather than a website, specifically
called "Pro Time Mobile App." It seems to be designed for
time management, work schedules, or attendance tracking,
as suggested by the calendar interface and terminology used.
Here’s a list of the GUI components and their potential ac-
tions based on standard mobile GUI patterns:
1. Top Navigation Bar:
- Back Navigation Icon (left arrow): Likely returns the user
to the previous screen or navigates back one level in the app
hierarchy.
- App Title Dropdown (Prolime Mobile App with a down-
ward arrow): Could allow for switching between different
sections or functionalities within the app.
- Search Icon: Presumably opens a search input to filter or
search for specific information within the app.
- User Initials Icon (GN): Likely leads to a user profile section
or account settings.

(C) textual description

FIGURE 4.4: Inputs of a computer system featuring an SAP time
recording application. From left to right: Pixel Representation in Fig-
ure 4.4 (A), Structured DOM Representation in Figure 4.4 (B) and Tex-
tual Description in Figure 4.4 (C) generated by GPT-4V (OpenAI et

al., 2024).

Some agents lack computer system input, limiting them to executing predefined
sequences without any interaction possibility with the environment. These agents
excel in novel content generation or question answering rather than A2C2s (Y. Du
et al., 2023; G. Li et al., 2023; Qian et al., 2023; X. Wang, Wang, et al., 2023; Z. Wu et
al., 2024). Qian et al. (2023), for example, introduce ChatDev, a virtual chat-powered
software development company that enables the development of a software project
and improves traceability but is not able to react or interact with a computer system
or human. For this reason, these approaches are not discussed further in this section.

The input of the computer system (see Figure 4.4) serves as the observation space
for an agent and is pivotal to defining the action space from one observation to the
next. We identify four different categories of observation space, namely pixel repre-
sentation in Figure 4.4 (A), textual description in Figure 4.4 (B) and Figure 4.4 (C),
multimodal observation, and preprocessed observation. The categories are listed
in ascending order in terms of how structured they are and how complex the process
of finding all possible actions that can be executed on an observation (henceforth dy-
namic action inference) is.
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Pixel Representation

Using the pixel representations of the GUI offers generalizability across various do-
mains and environments due to uniform accessibility. Since every single pixel could
be needed to execute a subtask, a large action space, due to high resolution, can be
expected. For most agents pixel representation is equivalent to screenshots. How-
ever, some agents also use videos, given the advantage that IO actions can be tracked
and even instructions can be extracted from subtitles (Cheng et al., 2024; D. Gao et
al., 2024; Shaw et al., 2023; Tan et al., 2024).

The huge possible action space is a problem that agents with pixel representation
input have to handle and is identified as one of the biggest challenges in recent de-
velopment. This challenge can be tackled by abstracting the pixel representation (Z.
He et al., 2020; Hong et al., 2023; Rawles et al., 2023; team rabbit research, 2023;
Toyama et al., 2021; Wen et al., 2023). Further considerations can be found in subsec-
tion 4.3.1.

Textual Description

Textual descriptions, including interface descriptions (Patil et al., 2023; Schick et al.,
2023; Shen et al., 2023; Song, Xiong, et al., 2023) – APIs, database structure, code –
and hierarchically structured representations (Gur, Nachum, et al., 2023; Gur et al.,
2018; Gur, Furuta, et al., 2023; Jia et al., 2019; Kim et al., 2023; E. Liu et al., 2018;
Shvo et al., 2021; B. Wang et al., 2022; Yao et al., 2022; L. Zheng et al., 2023) – DOM,
view hierarchy (VH), hypertext markup language (HTML) – are commonly used as input
for the agent. This approach simplifies dynamic action inference because of reduced
possibilities and structured grouping but limits the application domain by excluding
applications that have no access to textual representation – desktop applications – of
the GUI.

The hierarchical structure provided by DOM, HTML, or VH significantly improves
task solution success rates in contrast to pixel-based observation space. HTML, in
particular, can be very successfully inferred (Kim et al., 2023) and outperforms VH
due to the nature of the training data of LLMs. Despite this, VH remains popular for
mobile agents (B. Wang et al., 2022).

Shen et al. (2023) utilize the Hugging Face (HuggingFace, 2024) model zoo for ful-
filling user instructions through a dynamic in-context task model assignment mech-
anism. This equips an agent with a dynamic toolset, each representing a possible ac-
tion. However, experimental results demonstrate the effectiveness of this approach
is contingent upon the quality, quantity, and uniformity of endpoint descriptions.

The high complexity and overloaded representation of textual descriptions enhance
the difficulty of selecting the correct elements for a subtask (Gur, Furuta, et al., 2023;
L. Zheng et al., 2023). Therefore, some approaches simplify the textual represen-
tation by eliminating unnecessary information. S. Zhou et al. (2023), for example,
exploit the less noisy accessibility tree representation, provided in most operation
systems and browsers for people with disabilities.
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Multimodal Observation

Since pixel representation and textual description are limited, the question arises
as to whether a combination can provide the best of two worlds and thus a better
interpretation of the observation space (S. Zhou et al., 2023).

With the help of generalized agents or existing VLMs, various works attempt to
increase the success rate and performance by pre-training or fine-tuning directly
on multimodal inputs. Humphreys et al. (2022) and Kil et al. (2024) show that the
textual description via DOM is more significant for completing an instruction, but a
further boost in accuracy is possible together with the visual representation.

B. Zheng et al. (2024) prove impressively that, relative to other SOTA models, GPT-
4V(ision) (openAI, 2023) has a high success rate on popular datasets like Mind2Web
(X. Deng et al., 2023) when focusing only on dynamic action inference. This can be
simplified by leveraging textual representation to improve contextual understand-
ing and emphasize on the pixel representation for spatial interpretation of the obser-
vation space in VLM (Y. Li et al., 2020).

Preprocessed Environments

Preprocessed human interactive environments are characterized by the assumption
that they have been predefined and have a fixed set of actions (L. Chen et al., 2021;
Raman et al., 2023; H. Sun et al., 2023; Z. Wang et al., 2023; Zhu et al., 2023). The
observation space is formulated clearly and comprehensibly for an agent and varies
only by parameters.

Ghost in the Minecraft (Zhu et al., 2023) introduces an agent where the observation
space is part of the finite and predefined Minecraft environment. The agent knows
which items exist and what the available actions are. Although the agent shows
strong capabilities for open world environments and outperforms the ObtainDia-
mond task by more than 47.5%, the environment provides the agent with structured
and interpretable observations and actions.

4.1.3 Discussion

A natural text instruction of the user can become more complex depending on word-
ing, precision, and completeness, which typically results in an A2C2 having to make
more iterations due to difficulty in planning. The quality of the instructions cannot
be forced and must therefore be taken as a given.

In contrast to the instruction space, the perception of the observation space can be
implemented in different ways. There is a trade-off between generalization and sim-
plicity. The more generalizable the observation representation is – pixel-based – the
more difficult it is to find the right actions for executing a subtask. An A2C2, which
functions platform and domain independently, needs a general observation space
and therefore handle pixel representation. Additional textual descriptions can be
provided for optimization purposes if available, but shall not be necessary.

After the agent has gathered the required input, it needs to assess how to update
and preserve acquired knowledge for the long-term. To accomplish this, it proceeds
to the island of learning (see section 4.2).
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Input Observation space

Preprocessed
Environments

Raman et al. (2023)
H. Sun et al. (2023)

Z. Wang et al. (2023)
Zhu et al. (2023)

Multimodal
Observation

X. Deng et al. (2023)
Humphreys et al. (2022)

Kil et al. (2024)
Y. Li et al. (2020)

L. Sun et al. (2022)
B. Zheng et al. (2024)
S. Zhou et al. (2023)

Textual Description Gur et al. (2018)
Gur, Furuta, et al. (2023)

Jia et al. (2019)
E. Liu et al. (2018)
Patil et al. (2023)

Schick et al. (2023)
Shen et al. (2023)
Shvo et al. (2021)

Song, Xiong, et al. (2023)
Wen et al. (2023)
Yao et al. (2022)

L. Zheng et al. (2023)

Pixel Repre-
sentation

Cheng et al. (2024)
Z. He et al. (2020)
Hong et al. (2023)
Rawles et al. (2023)
Shaw et al. (2023)

team rabbit research (2023)
Toyama et al. (2021)

Wen et al. (2023)

FIGURE 4.5: A compressed overview of agents and their affiliation to
the input island.
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4.2 Learning - refining skills and building knowledge

FIGURE 4.6: The learning island and how the A2C2 is learning to use
computer systems in comparison to Hila.

A good number of A2C2s do not use learning methods and rely on other parts of
the taxonomy. These agents operate on the assumption that SOTA models already
possess sufficient knowledge and reasoning capabilities to tackle complex instruc-
tions without dedicated learning (Wen et al., 2024; Yan et al., 2023; C. Zhang et al.,
2023; J. Zhang et al., 2024). For this reason, these approaches are not discussed fur-
ther in this section. Furthermore, this section does not cover the data collection and
pre-training methods of various agents, but tables of different data collections are
provided in the Appendix A.

The basis of an A2C2 is a solid knowledge of computer systems and the tasks that
can be solved on them. That is why the learning island is crucial for such an agent
and the methodology employed significantly impacts sample efficiency and perfor-
mance. Figure 4.6 shows the learning island and describes how Hila learns to use a
computer system compared to an A2C2. This section provides an overview of the
two most relevant types of learning: neural learning – how can the model weights be
adjusted? – and memory – how is an external knowledge base built?. It also discusses
online and offline learning – when does the learning happen? – in the context of A2C2.

4.2.1 Online and Offline Learning

In the context of an A2C2, online learning refers to updating the weights of a model
or storing experiences in memory iteratively after the execution of a predefined
number of tasks, no matter if they were successful or not. This approach allows a
model to adapt dynamically to changes and acquire new knowledge incrementally.
In contrast, offline learning means training the agent on a fixed dataset in batches
before inference. This typically requires more computational resources upfront and
produces a static agent.

4.2.2 Neural Learning

Neural learning includes all training strategies that adjust the weights of a neural
network via gradient descent or other update strategies. The relevant neural learn-
ing approaches for A2C2s are RL and fine-tuning. RL refers to pure RL approaches
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where models learn optimal actions through trial and error interacting with an en-
vironment. Fine-tuning includes models that initialize pre-trained weights and are
re-trained on domain-specific knowledge, which in turn can also be RL-based.

Reinforcement Learning

Current development in RL has proven successful in various tasks, such as landing a
space shuttle on the moon in gamified environments (Gadgil et al., 2020) or autonomously
driving vehicles (Grigorescu et al., 2019). Therefore efforts have been made to leverage
RL for training agents capable of autonomously performing tasks on a computer
system.

In the domain of computer control, systems such as AndroidEnv (Toyama et al.,
2021) demonstrate the effectiveness of RL, with either textual or pixel-based input.
These work in restricted domains like android devices without significant augmen-
tation, but encounter two fundamental difficulties: sparse reward for long trajecto-
ries and data efficiency.

Andrychowicz et al. (2017) tackle the issue of sparse rewards with hindsight expe-
rience replay, storing experienced episodes s0, s1, ..., sn and training off-policy algo-
rithms like DQN (Mnih et al., 2015) not only on a single sparse goal g but on a set of
goals g 2 G. Training on multiple goals can be easier and yield better results, even
if only a single goal is relevant.

Gur et al. (2018) propose curriculum learning and reward augmentation with Q-
learning to overcome sparse rewards. Curriculum-DQN simplifies instructions by
decomposing complex instructions into an easier subset (see section 4.3), gradually
increasing in complexity until the initial instruction can be successfully executed.
Reward augmentation involves counting the matching DOM elements between the
given state and goal state to compute normalized rewards heuristically.

The issue of data efficiency is addressed through various approaches. Shi et al. (2017)
employ behaviour cloning (BC) to supervised pre-train a model on demonstrations.
This works very efficiently in known but yields bad results for novel environments.
Meta-Trainer (Gur et al., 2022, 2018; Gur et al., 2021) and WebShop (Yao et al., 2022)
focus on generating dynamic environments with varying complexity levels to create
sufficient demonstration data, rendering a possible data bottleneck negligible. The
Meta-Trainer achieves this by training an instructor to recover rule-based or random
policies, which can then generate expert-level demonstrations to train an agent. Ex-
periments show good results for simple webtask environments but are limited to
100 DOM elements, which is far from reality – ProTime (see section 2.5) has 1252 DOM
elements. Another indicator for the limited performance of such agents is that the
best model of the WebShop agent has a task succession rate of 29%, while human
expert performance is evaluated much higher at 59%.

Decision Transformer (L. Chen et al., 2021) converts RL problems into conditional
sequence modeling, enabling the use of masked transformers to obtain optimal ac-
tions. Comparison of the proposed architecture and other offline RL architectures
shows that Decision Transformer not only performs better on longer context lengths,
but is also effective in long-term tasks with sparse rewards.



4.2. Learning - refining skills and building knowledge 21

Fine-Tuning Models

Fine-tuning a model is the process of unfreezing part of the weights of an existing
foundation model with pre-trained parameters and adapting them to learn domain-
specific knowledge (Howard & Ruder, 2018). This fine-tuning process can in turn
use different machine learning strategies. WebGPT (Nakano et al., 2022), for exam-
ple, learns to interact with the web by RL-tuning and BC-tuning. While RL-tuning
can handle dynamic observation spaces well, it tends to be more expensive and time-
consuming than other approaches for more complex computer systems.

Instruction tuning and low-rank adaptation (LoRA) are two popular training tech-
niques utilized for fine-tuning existing models (Gur, Furuta, et al., 2023; H. Liu et
al., 2023; Patil et al., 2023; Xiang et al., 2023; Zeng et al., 2023). Their strength is the
calculated efficiency and data efficiency compared to training a model from scratch
and the interpretability provided by the expert data (Chung et al., 2022; Raffel et
al., 2019). For instance, Schick et al. (2023) employs Toolformer, which leverages
a collection of APIs and their description as training data for instruction-tuning a
pre-trained LLM. This leads to an improved capability of selecting the right API for
an instruction. Furthermore, both LLM and VLM benefit from fine-tuning (Furuta
et al., 2024; Kapoor et al., 2024; W. Wang et al., 2024).

An exciting development highlighted by Lù et al. (2024) is WEBLINX. They illustrate
through experiments that smaller, fine-tuned language models outperform even the
best zero-shot LLMs such as GPT-4 (OpenAI et al., 2024), in solving web tasks. How-
ever, these smaller models exhibit significantly poorer generalization to unseen ob-
servation spaces.

4.2.3 Memory

Memory as a training method gained popularity with advances in retrieval aug-
mented generation (RAG) (Cai et al., 2022; Lewis et al., 2020; J. Lin et al., 2023; Mao et
al., 2020; Park et al., 2023). While memory may not involve the same kind of weight
optimization as traditional neural network training, it focuses on preparing gen-
eral information, past experiences, and domain-specific knowledge in an efficiently
queryable way. This enables an agent to, access a dynamic changeable knowledge
base. In literature, there are many ways to build such a long-term memory. The
three most relevant ones are natural language memory, embedding memory, and
symbolic database.

Natural Language Memory

This type includes all agents that store information as raw text (Shinn et al., 2023;
G. Wang et al., 2023). Reflexion (Shinn et al., 2023), stores the experienced tasks and
then uses a sliding window technique to retrieve the desired text. The advantage
of natural language memory is a, for humans, readable, comprehensible, and easily
adaptable knowledge base. However, complex algorithms are needed to retrieve the
right information in a growing knowledge base.

Embedding Memory

The majority of agents encode information into an embedding, which is then stored
in a vector database (J. Lin et al., 2023; Ng et al., 2023; Park et al., 2023; Qian et al.,
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2023; Qin, Hu, et al., 2023; L. Wang et al., 2024; L. Zheng et al., 2023; Zhong et al.,
2024; Zhu et al., 2023). This enables an agent to retrieve task-relevant knowledge
and experiences through embedding similarity – cosine similarity, euclidean distance
– during input decomposition (see section 4.3). The prerequisites of useful embed-
dings are a good chunking strategy and a tokenizer and embedding model tailored
to the agent.

Inspired by the Davidsonian semantic theory (Davidson, 2001), Modarressi et al.
(2023) store the data in a structured list and its vector representation. Each triplet <
t1, t2, t2 > defines, very similar to prolog (Warren et al., 2015), the first argument, the
relationship and the second argument – < hila, so f tware engineer, large company >.
Thanks to this memory, semantic similar triplets representing relations, can be found,
leading to more stable and expected output.

Symbolic Database

Some approaches utilize external symbolic databases to store knowledge (Hu et al.,
2023; X. Zhou et al., 2023). By exploiting the ability of an LLM to generate struc-
tured query language (SQL) an agent can dynamically translate natural language
instructions into SQL and select, delete, or update information stored in the symbolic
database. Hu et al. (2023) store relevant information of a synthesized dataset into a
symbolic database, resulting in a strong improvement over an LLM without memory
with 60% better accuracy. This assumes that all the required information is available
and can be displayed in a typical tabular form.

4.2.4 Discussion

All training methods can be carried out online and offline, and are not mutually
exclusive. Some agents perform fine-tuning and include an experience memory
(Cheng et al., 2024; Y. Deng et al., 2024; Wen et al., 2023). If a specific task with low
variance is trained, RL and BC may be the right choice – recurrent task bots. However,
RL is not feasible for an A2C2 due to the large amount of data needed. For more gen-
eral agents, that intend to operate unseen applications, fine-tuning and/or memory
is the right choice because it is more flexible and less resource-intensive. The optimal
training method needs extensive research. H. Liu et al. (2022) have shown that op-
timized fine-tuning can be better and cheaper than memory for classification tasks.
In contrast, Ovadia et al. (2024) show that for unseen domains, knowledge injection
through memory has an average accuracy gain of over 20% over unsupervised fine-
tuning. Unfortunately, these two research experiments are not meaningful enough,
as they did not compare two equivalent methods. Both publications feature one
highly optimized and another basic implementation. To make a relevant statement,
two highly optimized SOTA variants need to be compared.

Now that the A2C2 has explored the possibilities of learning, it needs to know how
to utilize this knowledge to plan an instruction and its subtasks. To answer this
question, the agent continues to the input decomposition island (see section 4.3).
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FIGURE 4.7: A compressed overview of agents and their affiliation to
the learning island.
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4.3 Input Decomposition - ensuring task comprehensibility

FIGURE 4.8: The input decomposition island and how the A2C2 car-
ries out the decomposition and planning of an instruction compared

to Hila.

After the A2C2 has learned what information it receives and how it can learn, the
next steps are to derive the possible actions from the observation space and to break
down complex instructions into subtasks. Figure 4.8 shows the input decomposition
island and explains how Hila proceeds with a complex instruction in comparison to
an A2C2. This section tackles the two methods to achieve this: dynamic action
inference – how can the observation space be simplified? – and subtask inference – how
can a complex instruction be partitioned?

4.3.1 Dynamic Action Inference

TABLE 4.1: An overview of the individual dynamic action inference
methods. The aim is for all columns to contain the smallest possible
values. For the visual representation see Appendix B. Tokens were

counted with the OpenAI tokenizer as a reference(OpenAI, 2024).

size (KB) actions tokens

raw HTML 224 1331 tags 76485
raw image 530 2400 x 1080 pixels 425
filtered HTML 20 41 tags 6178
processed image 530 91 elements 425
inferred representation 2 48 elements 797

The dynamic action inference describes different methods allowing A2C2s to iden-
tify actions (see Table 4.1), localize elements from the observation space – known as
grounding, and structure them interpretably. An A2C2 needs this action inference to
reduce the action space to a manageable size. Static action spaces decrease complex-
ity, simplify, and stabilize the learning process of an agent (Q. Liu et al., 2022) but
lack the capability to interact with unseen computer systems. The inference methods
can be divided into three categories, namely textual, pixel-based and multimodal
inference.
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Textual Inference

Textual inference refers to processing DOM or VH input as observation space, mak-
ing dynamic action inference easier because of their organized structure. These at-
tributes can already be considered partially decomposed since the GUI components
are identifiable through their unique representation. The use of such a representa-
tion entails limitations due to context length constraints (see Table 4.1 raw HTML
tokens) and the presence of task-irrelevant information (see Table 4.1 raw HTML
size). This leads to incorrect action suggestions. Hence, existing approaches attempt
to minimize the structured representation without losing its benefits to tackle said
limitations.

Most methods rely on the ability of LLMs to understand HTML in simulated envi-
ronments (Tao et al., 2023; N. Xu et al., 2021; L. Zheng et al., 2023). Gur, Furuta, et al.
(2023) pay particular attention to real-world websites, showing an increased com-
plexity because of the overloaded representation. They counter this by summariz-
ing the large HTML documents into task-relevant snippets using the self-introduced
HTML-T5, an LLM specifically trained to handle long HTML input, to better capture
the structure of long HTML documents and thus be better processed by the agent
(see Table 4.1 filtered HTML).

To improve the understandability of the observation space B. Wang et al. (2022) map
the domain-restricted representation of VH heuristically into HTML using depth-
first search. This is done because LLMs are proven to perform better in understand-
ing HTML due to their pre-training dataset. Nonetheless, the HTML needs to be
reduced to a compact set of properties – class, text, resource_id, content_desc.

Shvo et al. (2021) present an RL-based system that maps VH into a n x m matrix
where n represents a GUI element – div, button, a – with m features, including the
textual description that specifies its purpose, whether it is clickable or editable, and
its relative location in the VH. The relative location helps to capture the spatial cor-
relations across elements. While this simplified VH representation suffices for their
benchmarks of four mobile apps – Shopping list, Alarm clock, Internet settings – they
recognize the potential in including pixel-based representation for capturing salient
information that is not provided by the VH.

Pixel-Based Inference

In order to reproduce human behavior when using an application as well as the fact
that textual descriptions are not always accessible, an A2C2 must succeed in dy-
namic action inference based on a pixel-based representation (Bavishi et al., 2023;
Cheng et al., 2024; D. Gao et al., 2024; T. J.-J. Li et al., 2021; Shaw et al., 2023; J. Wu
et al., 2021; Yan et al., 2023; You et al., 2024; X. Zhang et al., 2021). Contrary to tex-
tual description, pixel-based representation is unstructured, and therefore dynamic
action inference becomes significantly more difficult. The challenge in pixel-based
systems lies not only in the reduction of this extensive action space (see Table 4.1
raw image) but also in bringing it into a structured form. Here the difficulty lies in
the meaningful breakdown of a GUI by utilizing computer vision techniques – edge
detection, color detection and optical character recognition (OCR) – for the extraction of
logical components from the screenshot (see Table 4.1 processed image).
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AutoDroid (Wen et al., 2023) proposes a strategy where HTML is generated from the
GUI representation, by exploring an application offline and storing the information
in a transition graph. The HTML is then simplified to a reduced number of inter-
active elements and their properties. Additionally, invisible elements are removed
and equivalent elements are merged.

CogAgent (Hong et al., 2023) highlights the problem that especially tiny icons or text
are difficult to recognize in the conventional resolution. However, increasing the res-
olution for better recognizability leads to the known context length constraints. To
counteract this, they introduce a high-resolution cross-module – smaller pre-trained
visual encoder with 0.3B parameters using cross-attention with a smaller hidden size – that
is capable of efficiently processing high-resolution image features while minimiz-
ing the computing load. This is done by using two different visual decoders that
differentiate in hidden size to achieve good performance in VLM and OCR.

An optimization of the approaches above is presented by Song, Bian, et al. (2023).
They utilize YOLOv8 (U. Team, 2023), a SOTA deep learning model for object detec-
tion and segmentation and explicitly train it on GUI components. To get the textual
information PaddleOCR (Y. Du et al., 2020) is applied. The core of this approach is
semantic grouping, which gradually divides the recognized elements and texts from
the GUI into semantically related blocks. This approach outperforms existing imple-
mentations like GPT-4V(ision) (openAI, 2023), by recognizing the semantic groups
precisely regardless of the size of the elements.

ScreenAI (Baechler et al., 2024), a VLM specialized in GUI and infographic under-
standing, uses a detection transformer model to annotate screens by identifying GUI
elements like images, graphics, buttons, and text. Unlike previous approaches (G. Li
et al., 2022), it also predicts the bounding boxes of the GUI elements and has the ca-
pabilities of an icon classifier for improved icon recognition. Unrecognizable icons,
infographics, and images are fed to the PaLI (X. Chen et al., 2023) image caption
model, which provides descriptive and contextual captions. Finally, an OCR en-
gine extracts text content combined with the annotations. Overall, a comprehensive
SOTA screen description can be created through this process with a comparatively
smaller – 5B parameters – model. Nevertheless, further research is needed to match
the performance of large multimodal models (LMMs).

Multimodal Inference

To benefit from the generalizability of vision components and the structure that
comes with textual representation, dynamic action inference can be done on mul-
timodal input. More recent approaches are based on vision transformers, charac-
terized by their transformer architecture, which can process spatial and sequential
data and thus show good results in mapping text to images and vice versa (Conde
& Turgutlu, 2021; Han et al., 2020; G. Li & Li, 2023; Soselia et al., 2023).

Multiple recent agents utilize the entire or parts of the HTML representation together
with a screenshot (Furuta et al., 2024; Kil et al., 2024; Lù et al., 2024). Lù et al. (2024)
introduce the Dense Markup Ranking (DMR), which compares HTML elements with
past actions to identify the most relevant elements and remove irrelevant ones. This
results in a more compact DOM representation that, along with action history and
screenshots, becomes faster than X. Deng et al. (2023) and H. He et al. (2024). Similar
to Song, Bian, et al. (2023) they use the Dual-View-Contextualized Representation to



4.3. Input Decomposition - ensuring task comprehensibility 27

contextualize each HTML element with its pixel representation neighbors, optimiz-
ing further by ensuring semantically related elements are often close to each other.

S. Zhou et al. (2023) explore another approach by using the DOM tree, a screenshot
of the website, and in addition its accessibility tree. This three-column representa-
tion provides the greatest flexibility to relate to elements on the website and enable
textual and pixel-based inference strategies. Following this and inspired by J. Yang
et al. (2023), Koh et al. (2024) present their set-of-mark (SoM) implementation. Each
interactive element on the website is labeled with a bounding box and an ID. The
system takes a screenshot that enables a VLM to reference elements using the labels.
Thanks to SoM, small, closely spaced elements can be recognized correctly, which is
not always possible with the accessibility tree approach.

4.3.2 Subtask Inference

To reduce complex instructions, the first step is to determine whether the user in-
struction can be performed in a single step, or whether it is more complex and there-
fore needs decomposition for successful execution. Afterwards, the instruction gets
decomposed into more feasible subtasks with optional experience usage.

Instruction Type

Since the instruction modality is clearly defined in subsection 4.1.1, it is insightful to
analyze which types of instructions can occur. This gives a better understanding of
what an A2C2 needs to be capable of processing. The vast amount of publications
(X. Deng et al., 2023; Y. Deng et al., 2024; Gur, Nachum, et al., 2023; Z. He et al., 2020;
Jia et al., 2019; Lù et al., 2024; Reed et al., 2022; S.R.K. Branavan et al., 2010; L. Zheng
et al., 2023) are differentiating between single and sequential task instructions.

Open ProTime

FIGURE 4.9: A single task instruction example: Open the application
ProTime.

Single task instructions (see Figure 4.9) are characterized by their singular focus on
a solitary observation, typically straightforward. Such instructions are designed to
require only a limited number of actions to accomplish the intended task.

Open ProTime Book 0700 - 1200 Book 1200 - 1800

FIGURE 4.10: A sequential task instruction example: Open the appli-
cation ProTime. Book my working hours from 0700 - 1200. Book the

working hours from 1230 - 1800.

Sequential task instructions (see Figure 4.10) encompass a series of single tasks
distributed across various observations within a single application. With the most
amount of data collected in this category, we can conclude that the highest percent-
age of user instructions can be assigned to this category (Shen et al., 2023).
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Check calendar

Open ProTime Book working hours Book activities

Check GitHub

FIGURE 4.11: A graph task instruction example (see section 2.5):
Please record my working hours and activities on ProTime. For the
activities check assigned GitHub issues and my calendar. I worked

from 0700 to 1700 with a 30min lunch break at noon.

Graph Task as illustrated in Figure 4.11 is introduced by HuggingGPT (Shen et al.,
2023), covering many real world applications. This category is a useful addition,
as it allows different subtasks to be handled separately, improving performance and
expanding planning options. Graph tasks involve sequential tasks, with the addition
of parallelism, which means that multiple single tasks do not depend on each other
– check calendar, check GitHub, open ProTime. Dependent instructions can be merged
at a later point in time – book working hours, book activities.

In a generalized application domain, we propose a second dimension to the above-
mentioned task types, the single-/multiapplication task was not found in the avail-
able literature. This dimension determines whether a task operates on multiple ap-
plications or if the goal of the user is achievable using a single application. In current
literature and existing benchmarks, it is commonly assumed that the agent starts
with the right observations and a user instruction that is bound to it. Figure 4.11
shows three different applications, calendar, GitHub, and ProTime. For awareness
of complete observation space switching – launch a new application – it is crucial to
determine whether the agent is dealing with a single or multi-application task.

Decomposition Process

If a user instruction is not assignable to the type of single task, planning and exe-
cuting an instruction can be challenging for the agent. Therefore, some recent ap-
proaches are dedicated to simplifying the instruction by decomposing it into more
feasible subtasks. These methods are directly integrated into the planning process
of the agent (Ding, 2024; Gur, Furuta, et al., 2023; Huang et al., 2024; G. Li et al.,
2023; Niu et al., 2024; Qian et al., 2023; Ruan et al., 2023; Z. Wang et al., 2023). The
decomposition is limited to agents that generate text via LLMs. Other agents can use
a similar process internally, without being fully comprehensible by humans.

L. Wang et al. (2023) address limitations in few-shot chain-of-thoughts (CoT) prompt-
ing (Wei et al., 2022) and zero-shot CoT prompting (Kojima et al., 2022), namely
calculation errors, missing step errors, and semantic misunderstanding. They are
tackling these problems with plan and solve prompting. The plan, as the first step,
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represents the decomposition of the instruction. The LLM receives the user instruc-
tion as well as a prompt template on what to do. In contrast to the conventional
step-by-step approach, they claim that the problem must first be understood before
a plan can be developed – Let’s first understand the problem and devise a plan to solve
the problem. As a result, it has been proven that calculation errors and missing step
errors can be reduced by 2% to 3%, but semantic misunderstanding remains due to
the difficulty of correct prompting.

Y. Wu et al. (2023) build on the concept of hierarchical task scheduling and develop a
three-level framework Plan, Eliminate, and Track, where the Plan module performs
task decomposition, inspired by the human ability to organize complex tasks into
higher-level subtasks and the contextual prompting techniques of LLMs. Based on
the task description, the module is asked the question – What are the middle steps of
this description? – and instructed to generate a list of subtasks. Despite the good
performance, evaluation errors occur due to the variance in token generation – syn-
onyms do not achieve full accuracy on the ground truth.

AssistGUI (D. Gao et al., 2024) introduces a planner based on LLM that receives an
instruction video in addition to the user instruction and creates a hierarchical task
tree p = [p1, p2, ..., pN ], where each pi corresponds to a list of subtasks. This is done
by creating hierarchical steps based on the video subtitles from the observation space
and then adapting them according to the user instruction. Despite promising results,
flaws such as the usage of redundant operations in the task tree remain.

Some approaches allocate the subtasks to different agents (Khot et al., 2023; Y. Wang,
Wu, et al., 2024). TDAG (Y. Wang, Wu, et al., 2024) focuses on the problem of un-
changeable subtasks during runtime. This means that the failure of a subtask re-
sults in the failure of the entire complex instruction. To counteract this problem a
main agent decomposes the user instruction and assigns a specific subtask to each
subagent which increases the success rate by an average of 5%. In addition, the
subtasks are dynamically adaptable and therefore have a chance to recover from er-
rors. Nevertheless, the optimized performance of the TDAG comes at the cost of
increased resource consumption and slower inference speed, which must be taken
into account, especially in time-critical and resource-constrained environments.

Experience Usage

As an optimization of the direct decomposition of user instructions, the additional
integration of past experiences is mentioned in various approaches. These empirical
values can be gained from the short-term experience of an agent (Qin, Hu, et al.,
2023; R. Zhou et al., 2024) or by working with a long-term memory module (Y. Deng
et al., 2024; S. Lee et al., 2023; Z. Wu et al., 2024; Zhu et al., 2023). In the beginning of
A2C2, hierarchical reinforcement learning approaches have transformed from man-
ual specification (E. Liu et al., 2018; Parr & Russell, 1997) of subtasks to combining
task decomposition with experience (Andreas et al., 2016) to fully relying on expe-
rience (Daniel et al., 2016; Marzari et al., 2021). In more recent times foundation
model-based agents have experienced a similar evolution.

RestGPT (Song, Xiong, et al., 2023) presents a method based on the cooperation of
a planner and an API selector. This collaboration can be described as an iterative
decomposition of the user instruction into subtasks and their corresponding APIs. In
each step t, the planner uses its experience to generate a high-level natural language
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plan based on the user instruction, previous natural language plans (p1, p2, ..., pt�1)
and the execution results (r1, r2, ..., rt�1). Despite impressive results with a success
rate of > 70% for their baseline, the success rate decreases drastically if the planner
loses sight of the goal after several rounds of execution.

AgentSims (J. Lin et al., 2023) a simulated environment evaluates LLMs and their
task performance capabilities. The task decomposition is described as a planning
system that processes the generated subtasks based on information from a vector
database. Embedded experiences are stored and retrieved to expand knowledge
about specific or recurrent events.

Inspired by how humans decompose complex instructions into subtasks, MobileGPT
(S. Lee et al., 2023) uses the Explore-Select-Derive process.

• Explore: In this phase, relevant subtasks are generated for as many screens as
possible in a pre-emptive, offline manner. This subtasks are stored in memory
to be used during the select phase.

• Select: Based on the user instruction and the subtasks associated with the cur-
rent screen, a list of potential subtasks is retrieved from memory. An LLM is
then queried to determine which subtask should be executed to fulfill the user
instruction.

• Derive: The LLM is prompted with low-level actions in an iterative approach
to determine the specific action required to execute the subtask. This process
continues until the subtask is fulfilled and the next subtask can be selected.
Once all subtasks have been completed, they, along with the user instruction,
are saved in memory.

The Explore-Select-Derive approach exceeds the success rate compared to the GPT-4
baseline by 11%, and the normally high latency when using VLMs can be reduced
by querying the memory.

In RecMind (Y. Wang, Jiang, et al., 2024), task decomposition divides the individual
steps into thoughts, actions, and observations. This extends prompting strategies
through the self-inspiring approach, which encourages the agent to generate and re-
fine its thoughts and solutions instead of reacting to directly given user instructions.
The agent is supported by a memory system that collects individual user data — per-
sonalized memory – as well as general information – world knowledge – that is loaded
via external tools such as databases or search engines. The additional knowledge
improves to decomposition of an instruction but leads to limitations imposed by the
context length of LLMs.

4.3.3 Discussion

Many approaches in dynamic action inference use the VH or are tested in simulated
environments, due to the minimized complexity of these environments. This leads
to an illusion of reality, as these approaches work very well on selected benchmarks
but show disappointing results for real-world applications.

Although the actions to be derived from the task are easier to determine with textual
inference of the observation space, the use of computer vision proves to be neces-
sary. This approach can be used system-independently and the rapid development
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of VLMs already shows promising results. Combining the use of screen and text
could pave the way for future improvements in A2C2.

It can be stated that task decomposition is becoming increasingly important, espe-
cially in newer systems (Niu et al., 2024; Z. Wu et al., 2024). Dynamic solutions for
subtask inference show good results due to their adaptability, especially in real-life
systems. The use of experience for the decomposition of tasks can be seen as the
most promising approach. Both personalized, user-related knowledge and knowl-
edge from past instructions can optimize the accuracy of task decomposition. A
sensible balance must be made between the amount of knowledge used and the re-
striction imposed by the context lengths of LLMs.

Having learned how to derive actions from the observation space and how complex
instructions can be decomposed into subtasks, an A2C2 still lacks the knowledge to
refine a plan from the received subtasks. This knowledge can be obtained on the
plan refinement island (see section 4.4).
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FIGURE 4.12: A compressed overview of agents and their affiliation
to the input decomposition island.
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4.4 Plan Refinement - debating and refining subtasks

FIGURE 4.13: The plan refinement island and how the A2C2 is deter-
mining iteratively the correct plan compared to how Hila is verifying

her plan.

Creating a meaningful plan from the subtasks is a core component of an A2C2. Fig-
ure 4.13 shows the plan refinement island and how an A2C2 verifies its plan com-
pared to how Hila proceeds.

After the agent has successfully reached the plan refinement island, possibilities for
analyzing the decomposed instruction and converting it into a polished plan are
presented. Therefore, this section is divided into three parts: open loop reasoning –
how good is the plan in itself? – multiagent reasoning – how good is the plan if compared
– and closed loop reasoning – what if an unexpected behaviour occurs? An agent may
incorporate several of these categories.

4.4.1 Open Loop Reasoning

The basis for sequential reasoning was established with CoT (Wei et al., 2022). This
prompting strategy uses a series of intermediate reasoning steps to take the com-
plexity out of a – arithmetic, common sense, symbolic – instruction, offering not only an
increase of the success rate – 2% for arithmetic instructions – but also an optimization
in robustness compared to standard prompting methods. It is noteworthy that CoT
becomes increasingly important as the parameter size of a model grows. Since CoT,
there has been a whole field of publications dedicated to surpassing it or creating
a variation of it adapted for specific open loop reasoning use cases (Y. Deng et al.,
2024; S. Gao et al., 2024; Kim et al., 2023; Sel et al., 2023; L. Wang et al., 2023; Y. Wang,
Jiang, et al., 2024; Z. Wang et al., 2024; Yao, Yu, et al., 2023; Yao, Zhao, et al., 2023;
J. Zhang et al., 2024; P. Zhou et al., 2024).

Kim et al. (2023) formulate a prompting scheme that recursively criticizes and im-
proves the output by including a critique – Review your previous answer and find prob-
lems with your answer – and improvement – Based on the problems you found, improve
your answer – step during reasoning. Such a self-critique ability leads to a proactive
reduction of errors and can be done multiple times before providing the user with
the final plan (Y. Bai et al., 2022; Ganguli et al., 2023; Saunders et al., 2022).

LLM+P (B. Liu et al., 2023) utilizes an LLM to convert an instruction to a problem in
the planning domain definition language (PDDL). After the conversion, an external
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planner solves the problem more efficiently than an LLM, and the solved plan is then
translated back into natural language. This leverages the success of tasks like Tower
of Hanoi (Hinz et al., 2013) and robotic applications from not working to over 85%,
showing that an LLM, even if prompted to behave like a planner, cannot handle the
amount of states and preconditions of a real-world task. However, for the correct
translation in PDDL, the task must be specified completely, which is rarely the case
with user instructions.

Graph of Thoughts (GoT) (Besta et al., 2023) introduces a framework that transforms
prompting to a complex thought network capable of retrieving the most important
information and enhancing the reasoning process with a feedback loop. Building
on self-consistency (X. Wang, Wei, et al., 2023) – generating multiple CoTs – and Tree
of Thoughts (ToT) (Yao, Yu, et al., 2023) – structuring thoughts as a tree – GoT tries
to imitate a human reasoning process, that is not limited to follow a single plan
or making multiple separate plans but can refine a task through complex thoughts.
The graph G = (V, E) contains a set of vertices V – solution to a subtask – and edges
E 2 VxV – subtasks (vx, vy, ..., vn) result in subtask vr with edges (exr, eyr , ..., enr) – and
uses a modular approach for scoring, validating and selecting the optimal subtasks.
This framework results in a 62% increase in quality over ToT and brings a great
speed reduction.

4.4.2 Multiagent Reasoning

One big improvement from CoT to GoT is the ability to evaluate and compare multi-
ple plans. This multi-plan capability has been done on a single agent, which requires
fine granular experience and memory management, as it tends to fixate on one so-
lution or hallucinate (Ji et al., 2022). To tackle this issue, and have separate entities
reasoning about a user instruction, multi-agent reasoning has been tried, enabling
research in techniques like majority votes and debates (P.-L. Chen & Chang, 2023; Y.
Du et al., 2023; T. Liang et al., 2023; Qian et al., 2023; L. Wang et al., 2024; Q. Wu et al.,
2023), which are often encountered in the real world – swiss parliament, open-source
community.

MAD (T. Liang et al., 2023) addresses the problem of sticking to an answer defined
as degeneration-of-thought by simulating a debate between multiple agents and a
judge who manages it and decides the final solution. In contrast to self-reflection,
where the average disagreement remains fairly constant over several reasoning it-
erations – between 15% - 25% – MAD starts with a very high disagreement between
agents of over 75% and reduces it to below 50% as the debate progresses. The frame-
work is designed to have a meta prompt that defines the number of agents, the
number of debate iterations, and other configurations. Then the agents and a judge
are instantiated and a debate round starts. One debate round consists of the agents
speaking in a fixed order after each other to argue and contradict the others. After
the maximum iterations or if the judge decides that the correct solution has been
obtained the debate is stopped, improving the success rate of CoT by 12%.

ChatDev (Qian et al., 2023) introduces a virtual software technology company, that
can solve complex software engineering tasks, through multiple agents – CEO, Pro-
grammer, Designer, Tester – and distinct phases – designing, coding, testing, document-
ing. The agents iteratively discuss and refine task requirements, in a process called
memory stream, until they agree. While the system significantly reduces develop-
ment time – avg. of 409.84s per task – and cost – avg. of $0.2967 per job, it struggles with
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project complexity and code quality due to limitations in autonomously determin-
ing implementation specifications and the inherent randomness of LLM-generated
code.

4.4.3 Closed Loop Reasoning

One problem that is not addressed in the systems, mentioned above, is the interac-
tion between the plan and the environment, as well as the interaction between the
plan and a user. After a plan is finalized and the first subtask is executed, undesired
behaviors can occur – errors in an application, execution of critical subtasks, nothing hap-
pening at all – which cause the plan to fail. In these situations, an A2C2 has to be
able to recover autonomously and include the feedback in the continuous plan re-
finement loop (P.-L. Chen & Chang, 2023; Lù et al., 2024; Raman et al., 2023; Shinn
et al., 2023; Yao, Zhao, et al., 2023; R. Zhou et al., 2024).

ReAct (Yao, Zhao, et al., 2023) has introduced a prompting method that combines
plan reasoning with action generation. This can be achieved through a combination
of thought – what does my environment offer, what do I need to be able to execute the sub-
task? – and act – how do I execute the subtask? – prompts in an iterative reasoning loop.
This allows the agent to be more controllable, human-aligned, and flexible for new
instructions. However, this method only works better than open loop approaches if
fine-tuned.

Reflexion (Shinn et al., 2023) proposes an alternative approach to autonomous think-
ing that uses verbal reinforcement to learn from previous failures by reusing internal
or external feedback as context for the next attempt. Specifically, the agent consists of
an internal feedback evaluator – formulates the problem of a subtask –, a self-reflection
component – explains why the subtask failed – an actor – executes new subtasks – and
a short-term memory – executed subtask knowledge for the current instruction – as well
as a long-term memory – general knowledge about multiple instructions and domains.
This approach is a complement to CoT or ReAct and increases their performance in
several benchmarks.

ART (Paranjape et al., 2023) pursues the idea that a human in the loop can inter-
vene in the execution of an instruction by assisting the agent with an example or by
introducing new requirements and information. This is done by allowing the user
to add correction subtasks to the current instruction, which are taken into account
during the next execution step. It achieves a significant improvement over few-shot
prompting.

4.4.4 Discussion

The ability to analyze critically is very important and brings a great increase in per-
formance for an A2C2. To work on computer systems, the agent requires a closed
loop reasoning approach, able to receive not only environmental feedback but also
human feedback. Human in the loop is one of these approaches, that do not yet ex-
ist widely, as this restricts the autonomy of an A2C2. However, this could improve
human alignment. To keep as much autonomy as possible human in the loop could
be modified to a system, where the human is represented by another agent, whereby
the real human only needs to serve as a control and intervention instance. Promising
approaches for this island are those that enable modular plan refinement, as these
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can be flexibly exchanged and made dependent on instructions and domains. (H.
Zhang et al., 2024; P. Zhou et al., 2024)

In the meantime, the A2C2 has visited four islands and acquired a broad knowl-
edge of how to successfully execute a user instruction. However, it still lacks the
knowledge of how to translate the plan it has received into executable actions (see
section 4.5).

Plan Refinement

Closed Loop
Reasoning

T. Li et al. (2023)
W. Li et al. (2024)

Pandey et al. (2023)
J. Zhang et al. (2023)

Multiagent
Reasoning

P.-L. Chen and Chang (2023)
Qian et al. (2023)

L. Wang et al. (2024)

Open Loop
Reasoning

Besta et al. (2023)
Y. Deng et al. (2024)
S. Gao et al. (2024)
Kim et al. (2023)

Paranjape et al. (2023)
Y. Wang, Jiang, et al. (2024)

C. Zhang et al. (2023)
J. Zhang et al. (2024)

FIGURE 4.14: A compressed overview over agents and their affilia-
tion to the plan refinement island.
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4.5 System Output - interacting with the environment

FIGURE 4.15: The system output island and how the A2C2 is correct-
ing his plan if the execution fails compared to the strategy of Hila.

Some methods are based only on generating text. In contrast to the generation of
executable actions, these methods focus on interacting with the user and telling them
what to do. As the generated texts cannot be utilized for computer control, these
techniques are not further considered (G. Li et al., 2023; Raman et al., 2023).

To translate the received plan into executable actions, the A2C2 requires the ability to
interact with its environment. The most human-like approach for it encompasses the
utilization of IO peripherals. This technique is characterized by considerable gen-
eralizability for various application domains. Other methods are based on the gen-
eration of executable code or selecting suitable tools. Figure 4.15 shows the system
output island and compares how an A2C2 and Hila interact with the environment.

4.5.1 IO Peripherals

The most intuitive option of system outputs is via IO peripherals. They enable a
high degree of generalizability and can be used across computer systems. The cate-
gory of IO peripheral output not only includes agents that can control IO peripherals
directly but also takes agents into account that output IO actions in the form of nat-
ural text – CLICK(x, y) or CLICK(boundingbox), which then can be transformed via
a module to executable actions. This output category is the most common for RL-
based agents (Gur et al., 2018; Humphreys et al., 2022; Jia et al., 2019; E. Liu et al.,
2018; Shaw et al., 2023; Shi et al., 2017; Shvo et al., 2021; Toyama et al., 2021; Yao
et al., 2022) and in recent development an increasing amount of LLM based agents
utilize IO peripheral output because of its strength of being able to react flexibly to
changes on the GUI (Cheng et al., 2024; X. Deng et al., 2023; Ding, 2024; H. He et al.,
2024; Kil et al., 2024; Kim et al., 2023; Rawles et al., 2023; Song, Bian, et al., 2023;
team rabbit research, 2023; Wen et al., 2023; Xing et al., 2024; Z. Zhang & Zhang,
2023; B. Zheng et al., 2024; Zhu et al., 2023). However, it faces the challenge of deal-
ing with the enormous action space described in subsection 4.3.1. Therefore the IO
peripheral output only becomes truly efficient when it is paired with a smart policy
for dynamic action inference, as this is a prerequisite for reducing the complexity of
the action space.
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AndroidEnv (Toyama et al., 2021), proves that the basic action types, such as touch-
screen movements can be reduced to a core set representing the entire action type
space if related parameters – coordinates – are provided. An action contains its type
and additional parameters that are necessary for execution.

ActionType 2 {TOUCH, LIFT, REPEAT}
tap = {LIFT, TOUCH, LIFT}

swipe = {LIFT, TOUCH, TOUCH, LIFT}

Such abstractions lead to smaller action spaces, which in turn leads to a reduction in
overall complexity.

Some publications try to achieve good performance of an agent without reducing
the action space complexity (Humphreys et al., 2022; Y. Li et al., 2020; Niu et al.,
2024; Shaw et al., 2023). This is attempted because the dynamic action inference is a
complex and not yet solved task itself (see chapter 6).

4.5.2 Executable Code

Another way in which executable actions can be made available by the agent is the
generation of executable code. This particular category is made possible exclusively
and impressively by SOTA LLMs like GPT-4 (X. Du et al., 2023) and Gemini (G. Team
et al., 2023), thanks to their extensive pre-training on open-source code repositories.
Most works in this area focus on generating python code (M. Chen et al., 2021; J.
Liang et al., 2022; Surís et al., 2023; X. Wang, Wang, et al., 2023), which is widely
used in machine learning and artificial intelligence (Thaker & Shukla, 2020). Gener-
ating code has the advantage that it can execute actions independently of tasks and
domains.

H. Sun et al. (2023) demonstrate the stability improvement for solving complex tasks
when executable code is not only used as output but also in the entire refinement
process of an agent. However, generating executable code does not solve nor tackle
the challenges of limited context-length or dynamic action inference. In addition,
there is no guarantee of whether the most performing libraries or the one preferred
by the user is used in the code generation.

Gur, Furuta, et al. (2023) present an approach that addresses the complexity of real-
world websites with a modular concept, where Flan-U-PaLM (Chung et al., 2022)
is used for synthesizing python programs, which interact directly with websites by
executing selenium code to simulate browser actions. They are based on summaries
and plans provided by an upstream module. This approach enables effective web
automation but faces the challenge of incorporating feedback about errors in the
generated code.

4.5.3 Tool Usage

Another system output involves the usage of existing tools (Anantha et al., 2023;
Kong et al., 2023; Y. Liang et al., 2024; Mazumder & Riva, 2020; Patil et al., 2023; Qin,
Hu, et al., 2023; Qin, Liang, et al., 2023; Ruan et al., 2023; Schick et al., 2023; Tang
et al., 2023; R. Yang et al., 2023), distinguishing itself from executable code by pre-
defining endpoints and their parameters. This enables reduced complexity through
executable and verified endpoints but limits flexibility. A problem with tool usage
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as output is determining which tool to apply and what the required parameters are
(Patil et al., 2023). This is addressed by either implementing a language model-based
retrieval system or by heuristically deciding the most suitable endpoint.

Patil et al. (2023) demonstrate that current LLMs, combined with retrieval systems,
can accurately determine the most fitting endpoint and its parameters. Several con-
secutive works (Kong et al., 2023; Y. Liang et al., 2024; Qin, Liang, et al., 2023; Ruan
et al., 2023) optimize the retrieval system to maximize the accuracy of endpoint pre-
dictions. Schick et al. (2023) enable dynamic tool use by employing a self-supervised
learning approach that generates tokens based on the best-fitting endpoint.

Mazumder and Riva (2020) propose generating a concept-level API to heuristically
determine actions to take. This approach is much more dynamic than predefined
endpoints but reintroduces the complexity of dynamic action inference.

Noteworthy is ToolAlpaca an approach by Tang et al. (2023), which fine-tunes small
language models on generalized tools, resulting in smaller expert language models
for the fine-tuned tool domain.

4.5.4 Discussion

The generation of executable code provides more accurate and reliable results thanks
to the pre-training of LLMs, but they do not solve the problem of context length
limitations. In addition, most of these approaches generate python code because it
is the most popular language for machine learning (Sultonov, 2023). However, this
could lead to a reduction of quality, as Buscemi (2023) has shown that julia has the
best success rate when generated by ChatGPT 3.5 (openAI, 2022).

The use of tools can decrease the complexity due to the predefined endpoints and
their parameters. In addition, LLMs can determine these endpoints and parameters
using a retrieval system. However, this leads to a limitation of flexibility in both
approaches. Even if the use of IO peripherals faces the challenge of an extremely
large action space, it still represents the most human-like and, above all, the most
generalizable form of system output. In correlation with the increasing importance
of dynamic action inference (see subsection 4.3.1) and subtask inference (see subsec-
tion 4.3.2), it can also be shown that IO peripherals are integrated in many recent
developments. This leads to the conclusion that accurate IO peripheral output can
only be obtained through optimal decomposition, which could, eliminate the limi-
tations of executable code or tool usage.

The A2C2 has now successfully navigated to all of the five islands – Input (see sec-
tion 4.1), Learning (see section 4.2), Input Decomposition (see section 4.3), Plan Refinement
(see section 4.4), System Output (see section 4.5) – and filled its backpack with a wealth
of knowledge about how to successfully fulfill a user instruction and what the re-
maining unsolved challenges are. If it ever lacks knowledge in its task as a Natural
Language-Instructed Autonomous Agent for Computer Control, it will remember
the visits to the islands and retrieve the missing knowledge. In chapter 5 we present
some of the most promising agents as well as our architecture of an A2C2.
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System Output

Tool Usage Z. Chen et al. (2023)
Kong et al. (2023)

T. J.-J. Li et al. (2017)
Y. Liang et al. (2024)

Mazumder and Riva (2020)
Patil et al. (2023)
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X. Du et al. (2023)
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J. Liang et al. (2022)
H. Sun et al. (2023)
Surís et al. (2023)

IO peripherals
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B. Zheng et al. (2024)
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FIGURE 4.16: A compressed overview of publications and their affil-
iation to the system output.
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Chapter 5

Identifying the Pinnacle Methods

With a wide insight into all the specialized islands an A2C2 has to navigate through,
the following chapter will present the most innovative systems across all islands
based on the criteria listed in section 5.1. The highlight is an own architecture of an
A2C2 in section 5.3, which draws inspiration from the most promising approaches
from each island and is intended to serve as a foundation for a possible practical
implementation in the future.

5.1 Criteria

To identify the most promising agents, we have defined criteria guiding our selection
process. It should be noted, however, that the selection of these criteria was made at
our discretion following the extensive literature review and with the categorization
of the taxonomy in mind. The four criteria chosen are actuality – how up to date
is the agent?, degree of functionality – has it been tested in production?, uniqueness
– is the basis of the agent unique? – and accessibility – how available is the agent for
further research?. The methods identified and their allocation to the defined criteria
are shown in Table 5.1.

TABLE 5.1: The methods identified based on the specified criteria
where 4 means fulfilled and 8 means not fulfilled.

actuality " functionality uniqueness accessibility

Rabbit team rabbit research 2023-03-12 4 4 8
PIX2ACT Shaw et al. 2023-06-12 8 8 4
SYNAPSE L. Zheng et al. 2024-01-19 8 8 4
CRADLE Tan et al. 2024-03-07 4 4 4

5.2 Methods

Each of the following sections is dedicated to an agent identified based on the de-
fined criteria (see section 5.1). We focus on illustrating how an agent navigates
through the islands that are described in chapter 4 and their strengths and weak-
nesses.
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5.2.1 Rabbit by team rabbit research (2023)

Input: The input to the Large Action Model (LAM) of rabbit are voice instructions. It
is worth mentioning that, unlike known voice-controlled assistants, sound instruc-
tion can only be given by holding a physical button for security reasons. The obser-
vation space is a virtual environment hosted on the rabbit OS cloud and is passed to
the agent as a pixel-based representation.

Learning: Rabbit leverages multiple ways of learning its LAM. Employing neural
networks and symbolic algorithms, the neuro-symbolic model is learning by demon-
stration – behavioral cloning – and uses collected long-term memory to achieve user
personalization and better interpret the intended instruction.

Input Decomposition and Plan Refinement: The authors claim that the zero-shot
capability of LLMs as well as symbolic algorithms can be combined to model the
structure of applications without a temporary textual representation. This model is
designed to optimize the selected action through regular, minimalist, stable, and ex-
plainable improvements. Combined with numerous imitations of demonstrations,
this should achieve a generalizability that can cope with unknown complex instruc-
tions.

System Output: The system output is not clearly defined, but since human imitation
of demonstrations plays a major role, it can be assumed that the system works with
IO peripheral output. How these actions are represented is not shown.

In summary, rabbit is a very exciting approach, as it is productively available and of-
fers its ecosystem with a hardware device, teach mode, and very well-integrated fea-
tures. The need for imitation or BC makes sense because the complexity of instruc-
tions can be reduced most efficiently by users and if an instruction can be learned
through individual demonstrations, this can be an exciting way to realize an A2C2.
However, the generalizability must be viewed critically, as there are currently only
eight different, very specific, functionalities available – search, music, rideshare, food,
vision, generative AI, note-taking, translation. Due to the large community and many
interested parties and the available teach mode, it is questionable why this list is not
growing exponentially if the neuro-symbolic model works so well.
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5.2.2 PIX2ACT by Shaw et al. (2023)

FIGURE 5.1: An overview of the PIX2ACT taken from the original
publication of Shaw et al. (2023), showing the possible actions and

the agents workflow.

The PIX2ACT agent is presented below using the taxonomy defined in chapter 4. An
overview taken from the original publication of Shaw et al. (2023) of the PIX2ACT
agent is shown in Figure 5.1.

Input: The input of the PIX2ACT agent consists of the pixel-based observation of
the current state in the form of a screenshot, scaled to extract the maximum number
of fixed-size patches within the sequence length limit, as well as the instruction in
form of natural language.

Learning: Through a combination of human demonstrations and an adaptation of
Monte Carlo tree search (Świechowski et al., 2021) integrated with a neural network
to estimate state values, new expert trajectories can be generated for training. The
value function uses the PIX2STRUCT (K. Lee et al., 2023) architecture, predicting
state values instead of actions. Successful episodes from the tree search policy are
used to iteratively improve the model through standard supervised learning.

Input Decomposition: PIX2ACT uses the PIX2STRUCT model based on image trans-
former encoders and text transformer decoders, pre-trained to parse screenshots into
possible actions.

Plan Refinement: Due to the RL nature of the agent, the plan refinement is made by
a next action prediction. This is a black box and strongly depends on training data
and strategy.

System Output: IO peripheral actions are encoded as text tokens and predicted au-
toregressively by the Transformer decoder. Beam search is used over tokens to out-
put the k-best actions, producing a set of top-k actions for a given state with their
approximate probabilities. These probabilities can be adjusted by a length normal-
ization factor.

In summary, PIX2ACT works very well on simpler benchmarks such as MiniWob++
(Shi et al., 2017) and WebShop (Yao et al., 2022) and outperformed at the time of
publication all other approaches that only work with pixel-based observations as
input. Compared to human solving of these benchmarks and agents that have the
DOM available, PIX2ACT performs on par. It needs to be tested on more difficult
benchmarks or online to evaluate real-world capabilities.
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5.2.3 SYNAPSE by L. Zheng et al. (2023)

FIGURE 5.2: An overview of the SYNAPSE framework taken from
the original publication of L. Zheng et al. (2023) consists of three key
component: state abstraction, trajectory-as-exemplar(TaE) prompt-

ing, and exemplar memory.

With SYNAPSE, L. Zheng et al. (2023) present an agent that builds upon three key
components state abstraction, trajectory-as-exemplar (TaE) prompting and exemplar mem-
ory to solve computer control tasks (see Figure 5.2). Nevertheless, SYNAPSE can be
presented according to our taxonomy.

Input: SYNAPSE receives as input the state of the computer in textual representation
in the form of HTML.

Learning: The agent utilizes the few-shot learning capabilities of LLMs to extract
relevant information from the raw states and to obtain a cleaned observation for
subsequent action generation.

Input Decomposition: To reduce the length of the individual states, SYNAPSE ap-
plies explicit and implicit abstractions depending on the complexity of the states. In
explicit abstraction scenarios, state-observation pairs are passed to the LLM as few-
shot exemplars together with the raw state to obtain a cleaned observation. While
for implicit abstraction scenarios, task descriptions and state analysis codes are used
as few-shot exemplars. These exemplars are combined with the current task, where-
upon code is generated that also returns a cleaned-up observation.

Plan Selection: SYNAPSE uses trajectory-as-example (TaE) prompting in the plan
refinement phase. Complete trajectories are used to prompt the LLM to generate
actions, formatted as <task, observation, action, ..., observation, action>. The LLM is
fed with successful trajectories, followed by the current one to generate the next
action. This process is repeated until the task is completed or the maximum number
of steps is reached. To find relevant trajectories as few-shot exemplars, embedding
models and similarity searches in the vector database are used.

System Output: The actions generated from the plan refinement phase are executed
directly. Depending on the benchmark, the actions can be natural text or pseudocode
– agent.type(ls), agent.press(enter).
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In summary, the three-part approach of SYNAPSE addresses current problems of
computer agents namely the limited context length of LLMs, the unexplored exemplar
structure, and task-specific exemplars, successfully solving a more challenging book-
flight task of MiniWoB++ (Shi et al., 2017) and also achieving a 56% improvement
over SOTA in-context learning methods in Mind2Web (X. Deng et al., 2023). It
should be noted that SYNAPSE currently works mainly on text. A promising ap-
proach for the future is the integration of multimodal understanding to successfully
solve more complex tasks and improve generalizability.

5.2.4 CRADLE by Tan et al. (2024)

FIGURE 5.3: An overview of the Cradle framework taken from the
original publication of Tan et al. (2024). Cradle takes video from the
computer screen as input and outputs computer keyboard and mouse

control determined through inner reasoning.

Input: The input for the CRADLE agent is the video sequence recorded since the
last action, which contains both visual information and the instruction.

Learning: The learning mechanism is called skill curation and consists of a process
that extracts relevant and successful skills from the episodic – experiences including
screenshots, LMM outputs – memory and stores them in a procedural – long-term,
structured – memory so that they can be reused. These procedural memory entries
can also be updated if necessary and consist of semantic code functions for IO con-
trol.

Input Decomposition: Decomposing the input is done by the task inference com-
ponent which utilizes a long-term summary of past experiences, the last reflection
results, and the input to prompt an LMM on what next actions should be done.

Plan Refinement: The validation and decision as to which action was successful is
carried out by an LMM. If errors occur during the action, new knowledge is gained
via a self-reflection module, which is incorporated into the next task inference step
to create a closed-loop system that can correct errors autonomously.
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System output: As system output, semantic code functions that encapsulate IO in-
structions – move_ f orward(duration) : key_hold(0W 0, duration) – are output, which
in turn can be executed by the agent to control IO peripherals.

In summary, CRADLE is closely aligned with the archipelago introduced in chap-
ter 4. Successful experiments on a functionally complex video game demonstrate
great potential for the application of computer control. The major challenge lies in
seamlessly integrating the numerous individual components of the CRADLE frame-
work and ensuring they harmonize with each other. Figure 5.3, taken from the orig-
inal publication by Tan et al. (2024), shows an overview of this framework. After the
integration of computer control, it would be very insightful to compare CRADLE
with other mentioned agents.

5.3 Our A2C2

FIGURE 5.4: System overview over our A2C2 implementation where
LTM stands for long-term memory, LM is the specialized language
model, LLM is the orchestrator, and VLM the model for dynamic ac-
tion inference. Icons for the computer system, LTM, LM, and VLM

are generated by Ideogram (2023).
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After presenting the pinnacle methods in the previous section 5.2, this section is
dedicated to our architecture of an A2C2. The objective of this section is to exploit the
strengths of existing methods in combination with our own ideas and present a solid
agent specification to facilitate an upcoming technical implementation. To stay on
the course of our archipelago, we structure our approach using the same taxonomy
from chapter 4, so that comparisons between A2C2s are straightforward. Figure 5.4
shows a system overview of our A2C2 implementation, which is described in detail
below.

Input: From the knowledge acquired in subsection 4.1.1, it is clear that the user in-
struction is given as natural language. Our agent receives a screenshot of the current
observation to obtain a GUI representation. Additionally, the agent is provided with
computer system information – OS information, list of installed apps, currently running
apps, default apps – to simplify reasoning and planning and personalize the user ex-
perience. To avoid reloading this information for the same user each time, the agent
is provided with user credentials, enabling user management.

Learning: The insights in section 4.2 helped us to realize that a smaller fine-tuned
model can work better on specialized tasks than a large foundation model. In addi-
tion, access to past experiences is very important to align repetitive tasks and opti-
mize the performance of an agent. These findings have led to the integration of the
following components:

• A VLM, trained for dynamic action inference so that it has grounding capabil-
ities. It receives the screenshot as input and generates a textual representation
similar to the example in section 2.5.

• A language model, fine-tuned to generate actions from the current observation
state and an instruction.

• Two long-term memories should store existing information about a user (Z.
Wu et al., 2024) and past successful experiences Tan et al. (2024) (henceforth
skills).

All components should be capable of being iteratively extended/fine-tuned so that
the agent can improve naturally. A further learning capability consists of extract-
ing information from the internet, allowing the agent to learn skills through self-
instruction in the background. This self-instruction works by exploring applications
and generating instructions with known ground truths from the gathered knowl-
edge.

Input Decomposition: The importance of input decomposition in the context of an
A2C2 was demonstrated in section 4.3. The decomposition module in our A2C2
needs to break complex user instruction into simpler subtasks. Firstly the VLM is
tasked to transform the screenshot input into a structured and accurately grounded
representation (Baechler et al., 2024). This description in combination with user and
computer system information and the most similar skills retrieved from the long-
term memory are fed into an orchestrator LLM, that decomposes the instruction
into as small as possible subtasks.

Plan Refinement: Our plan refinement (see section 4.4) component receives several
possible plans from the input decomposition. In a multitask instruction, one of the
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plans is always the current plan being executed. Furthermore, the best plans loaded
from memory and a novel plan with the current information created by the spe-
cialized language model are provided. Each plan has several subtasks, which are,
inspired by GoT (Besta et al., 2023), tracked in a knowledge graph. If a subtask ap-
pears in multiple plans or is a child of a successfully executed subtask, it is given
more weight. Once this graph has been created, subtasks that are on the same level
should be compared and checked for validity, criticality, and completeness using a
debating system inspired by MAD (Y. Du et al., 2023), where several agents debate
which one is the most suitable and a decision is made with the help of the orches-
trator as a judge. Finally, the subtasks that are picked by the orchestrator are added
to the current plan and passed on to the system output. If a subtask is critical or in-
valid, the subtask is set with a flag that expects user feedback. As no subtask defines
the end of an instruction, the judge should also verify whether the objective has been
reached or a termination criterion has occurred. If a subtask is successfully executed
it is saved as a new skill in the corresponding memory.

System Output: To keep the system output as generalizable as the rest of our agent,
we were reassured to execute IO actions (see subsection 4.5.1). Therefore, the sub-
tasks are mapped with the help of the specialized language model to corresponding
actions. An action consists of the action type – CLICK, TYPE, READ, SCROLL, a rep-
resentation of the element – bounding box, xy coordinates, pixel-representation, which
can be obtained from the dynamic action inference, and action type specific param-
eters – number of clicks, text, wheel rotations, which are used to define the action more
precisely.

In summary, our A2C2 should combine the analyzed strengths into a smart ecosys-
tem. To measure the comprehensibility and maturity of the A2C2, the components
are presented independently. In a second version, all components could be com-
bined in a deep neural network, but this would make it more difficult to monitor
and test the individual components. In the course of the bachelor thesis, a simplified
prototype of our A2C2 was developed to draw additional technical conclusions and
outlooks (see https://github.com/Yingrjimsch/a2c2).

https://github.com/Yingrjimsch/a2c2
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Chapter 6

Conclusions

This chapter summarizes our findings on the field of Natural Language-Instructed
Autonomous Agents for Computer Control providing an outlook for further consid-
erations and research topics in this field.

6.1 Summary

Our objective was to provide a survey of the research landscape of A2C2s by cate-
gorizing existing agents and outlining their strengths and limitations.

There are numerous ways to categorize the research landscape of A2C2s. The chal-
lenge lies in ensuring that as many agents as possible are represented by the catego-
rization while keeping it easy to understand and sequentially readable. We decided
to structure our categories based on human task-solving strategies – how would Hila
go about solving the task?, described with the analogy of an archipelago. The advan-
tage of this categorization is the reduction of complexity through a familiar pattern
for readers, resulting in a map that enables them to explore the islands and select
the most suitable findings for their requirements. Other categorization options in-
clude domain-specific categories – web, mobile, desktop, model-specific categories –
RL, LLM, VLM, skill-specific categories – GUI interpretation, reasoning, simplifying in-
structions – and more. Each approach provides unique insights and perspectives into
the field of A2C2s. However, they do not fulfill both mentioned criteria.

Another objective was to come up with a new architecture that integrates the iden-
tified strengths and our acquired ideas. Through this architecture and a simplified
prototype, we have gained insights into the current strengths and limitations of the
different islands of an A2C2. To demonstrate them in a comprehensible way, the
example described in section 2.5 – reporting work hours and activities on ProTime with
information gathered from the calendar and GitHub – is reused and the following sec-
tions are structured identically to the islands introduced in chapter 4.

6.1.1 Input

After receiving an instruction, first an A2C2 has to retrieve the observation space.
Therefore, it takes screenshots of the computer system and passes them to the next
component, together with optional information. This works very well, thanks to
increasingly open operating systems. The developed prototype has shown that the
information about installed and open applications, needs to be filtered to remove
those that cannot be operated by the user.
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6.1.2 Learning

The agent needs to know how to manage and retrieve long-term memory such as
the most similar skills to an instruction, and information about ProTime and Hila. In
addition, the agent should periodically fine-tune its specialized models to improve
their native quality.

Strenghts

Vector search works great for retrieving data from big knowledge bases like user
manuals. It is even easier to retrieve data from structured and self-managed data
like past experiences, as this data can be supplemented with metadata that simplifies
selection.

Fine-tuning is widely used and almost every newly released model includes a cor-
responding guide. Additionally, most models can be fine-tuned with a reasonable
amount of computer resources and examples. With the establishment of machine
learning operation systems the automation for periodical fine-tuning and quality
monitoring becomes less sophisticated.

Limitations

RL is not suitable for A2C2 as a very large amount of training data is needed to learn
instructions. If the required data is available, the agent can operate learned domains
or applications well but still fails to generalize to other domains or applications.

Datasets in the research area of A2C2 are mostly mobile or web-focused. This leads
to a deficiency in data for desktop applications. Most datasets and benchmarks con-
tain simple instructions and few representative instructions on how a user interacts
with a computer system (see section 6.2.1).

VLMs suffer from the same limitation regarding datasets. However, this limitation
will soon be solved by an increasing number of A2C2 approaches and open-source
VLMs.

Hallucination – the generation of logical-sounding but factually incorrect or useless re-
sponses – is a limitation that will always accompany generative AI systems. While it
can be reduced and controlled to some extent, it will not disappear completely (see
section 6.2.3).

6.1.3 Input Decomposition

During input decomposition, the agent must be able to analyze a screenshot, to iden-
tify and localize the individual elements on the desktop of Hila. In addition, it must
be able to break down the provided instruction into manageable subtasks.

Strenghts

Screen description can already be achieved by the capabilities of SOTA VLMs. This
description is limited to what is visible on the screen and lacks the knowledge of where
an element is visible on the screen.
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Instruction decomposition works very well thanks to rapid improvements of LLMs,
enabling natural decomposition capabilities. The three applications GitHub, Calen-
dar, and Protime can be separated correctly and used for individual further decom-
position, which is currently very important to assess the quality of subtasks, ensure
explainability, and identify critical actions. Insights gained from the prototype show,
that generating a multitask plan yields better results than predict the next subtask.

Limitations

Dynamic action inference remains a major challenge for the agent. Specifically, the
exact localization of elements on the screen works poorly. Although LMMs can rec-
ognize elements partially correctly, an increasing complexity of the screen decreases
said ability. This limitation could be optimized by either providing a segmentation
in advance or by using expert VLMs like ScreenAI (Baechler et al., 2024) in combi-
nation with a large amount of data (see section 6.2.2).

Interpretation of GUI elements – what is the purpose of this element? – is a remaining
limitation. Although SOTA LMMs can identify elements on a screen, they struggle
to fully understand how they are related to each other and what they trigger. This
is due to the great diversity in appearance and ways of labeling. Eliminating this
limitation proves difficult as it would require the unification of the elements. We
also noticed that when using multiple screens, there is a duplication that needs to be
taken into account.

Handling context becomes a limitation as soon as LLMs are provided with more ex-
tensive knowledge. If an instruction requires multiple knowledge sources and a ex-
perience history the maximum context length is reached quickly. This limitation can
be stretched with external memory, fine-tuning, or in-context learning. However,
not only the context size but also the ability to interpret a large amount of knowl-
edge simultaneously and draw the expected conclusions is challenging for current
agents. Research such as Mamba (Gu & Dao, 2023) and Infini-attention (Munkhdalai
et al., 2024) attempt to solve the context length limitation and show promising re-
sults. However, evaluating whether these approaches can extract information in a
large amount of relevant context is difficult.

6.1.4 Plan Refinement

During the plan refinement component, an agent needs to compare and interpret the
plans provided by the input decomposition and reduce them to a final plan. It must
therefore understand whether the subtasks are ready to be executed.

Strenghts

Reasoning capabilities of SOTA LLMs are very advanced (Kambhampati, 2024). It
does not matter whether open-/closed-loop or multiagent reasoning, all these meth-
ods work in the context of computer control. As described in section 4.4, a closed-
loop reasoning approach is necessary for multistep reasoning and can be improved
through multiple agents.
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Limitations

Performance is one of the biggest limitations not only in plan refinement but for
A2C2s in general. For users to be able to work productively with such an agent,
the response time must be reduced to a minimum. Multiple sources show that a
closed-loop system must respond in under 300ms. If constant informative feedback
is given, the user can wait up to a maximum of 10 seconds without disengaging from
the agent (Doherty & Sorenson, 2015; educative, 2024; Nielson, 1993). These limits
apply to one subtask execution, nevertheless, tests on the prototype and analytics
(artificialanalysis, 2024) have shown that the throughput of an LLM API call is not
yet very far, and if a multistep reasoning calls several endpoints, the response time
adds up very fast.

Nesting depth of subtasks is another limitation in plan refinement. The uncertainty
of how many subtasks an instruction has and whether these subtasks correspond
to actions or whether they consist of additional subtasks makes it difficult to reason
about the status of single subtasks and the end of an instruction. The implemented
prototype has shown, that if subtasks are defined as actions it is harder for LLMs
to reason and compare them because they lose the semantical meaning of a natural
language subtask.

6.1.5 System Output

The plan defined in the plan selection phase gets executed in the system output
component. Therefore, the agent must possess the skill to translate subtasks into
executable actions.

Strenghts

IO peripheral control is possible on almost all computer systems. In concrete terms,
this means that the GUI elements can be controlled directly through the agent using
integrated libraries such as pyautogui.

Definition of action types and required parameters – coordinates, number of clicks, text
– can be defined manually, mitigating the complexity of learning how IO peripherals
work – CLICK, TYPE, SCROLL.

Limitations

Grounding is a complex challenge for existing agents based on dynamic action in-
ference, and restricts the quality of action execution. The execution of the correct
element can only be achieved if the agent is given the valid positions of these ele-
ments. Therefore, this limitation can be solved only by addressing the problem in
dynamic action inference.

Screen interpretation after execution – the determination by the agent when a previous
execution has been completed – proves to be a challenge in the area of system output.
Possible solutions are the repeated creation of screenshots to determine the current
observation space or the insertion of a fixed time buffer that waits for the execu-
tion of actions. However, both approaches harbor the risk of being cost-intensive or
harming performance.
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6.2 Outlook

Finally, this last chapter provides an outlook to show the potential of exciting re-
search questions derived from the thesis and the identified limitations. This section
is categorized into low hanging fruits – achievable by the end of 2024, intermediate
goals – achievable in the next three years, and long-term visions – not solvable with
current technology. All predictions were based on our current knowledge of the de-
velopment of the area.

6.2.1 Low Hanging Fruits

In this section, we present potentials that have not yet been sufficiently researched
or that can easily be further experimented with.

Security

Even if all the limitations of an A2C2 mentioned in section 6.1 have been overcome,
one of the most important aspects is still underrepresented in current literature. The
security and privacy of user data are decisive factors towards a productive A2C2. As
mentioned in section 5.3, the observation space of an agent should be pixel-based.
However, a user does not want to constantly stream their desktop view to an ex-
ternal system without any guarantee of privacy, which leads to the need for either
local processing or encryption of the transmitted data. Furthermore, it is elementary
that critical tasks – purchase, password entry – can only be performed after user con-
firmation. This raises the challenge of how to detect such critical actions. Ultimately,
inadequate detection of critical actions as well as prompt injection carry the risk of
potential exploitation by an intruder, resulting in loss of sensitive data. It is, there-
fore, crucial to consider these aspects in future development steps by proactively
asking for user feedback if necessary, and the underlying generative models.

Personalization

Turning an A2C2 into a personalized agent fully tailored to the needs of a user re-
quires not only success rates when executing instructions but also a personalized
way of working. Such personalization can enhance performance, quality, and user
experience. Options like saving favorite applications, customizing workflows, or adapting
to the language pattern of a user can significantly improve the user experience. Per-
sonalization features such as storing computer system specifications, tracking installed
applications, or maintaining a detailed history of all instructions can boost performance
by providing quicker access to necessary information and the possibility of preload-
ing relevant knowledge from external data sources. They come with the sacrifice of
anonymity and the critical question of data ownership.

Datacollection pipeline

A very important topic, which is not dealt with extensively in this thesis, is how
an agent obtains its training data. This topic is very large due to many completely
different and great approaches. To work out the best way to realize such a data
collection pipeline, it would be interesting not only to know existing benchmarks
and datasets (see Appendix A) but also to get a detailed summary of the different
approaches. A follow-up survey or an extended version of this thesis could be useful
to gather this information. In our opinion, a great way to build such a pipeline
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contains a scraper, which interacts with different applications, annotates elements
if possible – in the web and mobile domain, and processes the data so it can be used
for fine-tuning. In addition, an LLM can instruct an agent with tasks, triggering it
to execute instructions and at the same time learn new skills and knowledge about
specific domains. This should be done on a virtual machine encapsulated by a user
to not interfere with their workflow. Another approach could be to leverage human
imitation (team rabbit research, 2023) and utterance masking (W. Li et al., 2024) to
stay human-aligned but still achieve generalization of action parameters.

6.2.2 Intermediate Goals

This section describes the limitations of the current state of A2C2 research, which
will be overcome in the next three years.

Performance

As described in the previous section 6.2.1, an A2C2 must be capable of perform-
ing critical actions such as processing screenshots or storing credentials locally or
in encrypted form. In addition, at least one model is available for inference. These
components of require substantial computing time and must therefore be optimized
to be viable. This speed-up is an important area of research for A2C2s. Internal
experiments with the prototype featuring multistep reasoning and multi-agent de-
bate have shown, that a single instruction can quickly accumulate over ten inference
calls, thereby extending the time until execution and resulting in an unsatisfactory
user experience. One optimization can be achieved by minimizing these calls whilst
still successfully executing instructions. Another performance optimization could
involve staying in the embedding space during the reasoning and refining to bypass
decoding efforts, coming with the risk of interpretation losses.

Grounding

As detailed in subsection 4.3.1, grounding pixel-based representations is a major
unsolved limitation. This can be tackled by upscaling current LMMs to the size of
LLMs, equipped with large amounts of grounding-specific data. This data can be
merged from existing datasets and enhanced by creating a data collection pipeline
(see section 6.2.1). With the fast-paced advancement of LLMs in mind, this limita-
tion will most likely be solved as soon as big tech companies are seriously trying
to achieve A2C2. The only hurdle is that the appearance of GUIs is continuously
changing with the current preferences of society, necessitating iterative retraining.

6.2.3 Long-Term Visions

Long-term visions refer to limitations, which, in our opinion, are not solvable with
the current technology. Therefore it is not possible to estimate a date for solving
these problems, nonetheless, these problems can be heavily researched.

Hallucination reduction

As described in section 6.1.2, there is always a risk of hallucinations in generative AI
systems. Eliminating this proves impossible with deep neural networks, as a certain
degree of unpredictability always remains in such black-box systems.
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Appendix A

Data Collections
In this appendix, various data collections are presented, and organized into three ta-
bles based on the specific areas of an A2C2 they target. Table A.1 lists data collections
specialized in LLM reasoning, while Table A.2 focuses on data collections designed
for dynamic action inference for screens. Lastly, Table A.3 includes data collections
utilizing screen representations and actions as output. Decoupling an A2C2 allows
for separate evaluation of its different components on specialized benchmarks, en-
hancing the flexibility of analysis.

TABLE A.1: Summary of data collections specialized in reasoning.
1 Dataset, 2 Benchmark, 3 Environment.

Name Type Detail Reference

CoAuthor 1 Text M. Lee et al. (2022)
Constitutional AI 1 Text Y. Bai et al. (2022)
GSM8K 1 Text Cobbe et al. (2021)
MMLU 1 Text Hendrycks et al. (2020)
Real Toxicity Prompts 1 Text Gehman et al. (2020)
API-Bank 2 Tools M. Li et al. (2023)
OK-VQA 1 2 Image Marino et al. (2019)
TruthfulQA 1 2 Text S. C. Lin et al. (2021)
HotPotQA 2 3 Text Z. Yang et al. (2018)

TABLE A.2: Summary of data collections specialized in dynamic ac-
tion inference for screens. 1 Dataset, 2 Benchmark.

Name Type Detail Reference

PhraseNode 1 DOM, Screen Pasupat et al. (2018)
UIBert 1 DOM, Screen C. Bai et al. (2021)
RicoSCA 1 VH, Screen Y. Li et al. (2020)
ScreenAI 1 Text, Screen Baechler et al. (2024)
VisualWebBench 2 Web J. Liu et al. (2024)
Screen2Words 1 2 Screen B. Wang et al. (2021)
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TABLE A.3: Summary of data collections for full A2C2. 1 Dataset,
2 Benchmark, 3 Environment.

Name Type Detail Reference

RUSS 1 DOM, Screen N. Xu et al. (2021)
WebVLN-v1 1 HTML, Screen Q. Chen et al. (2024)
AITW 1 Text, Screen Rawles et al. (2023)
PixelHelp 1 Text, Screen Y. Li et al. (2020)
META-GUI 1 VH, Screen L. Sun et al. (2022)
MoTiF 1 VH, Screen Burns et al. (2022)
UGIF 1 VH, Screen Venkatesh et al. (2023)
ScreenAgent 1 Desktop Niu et al. (2024)
SkillForgeChain 2 Text H. Lin et al. (2023)
ToolBench 2 Tool Q. Xu et al. (2023)
Androidenv 3 Android Toyama et al. (2021)
MobileEnv 3 Mobile D. Zhang et al. (2024)
ALFWorld 3 Text Shridhar et al. (2020)
MiniWoB 3 Web Shi et al. (2017)
MiniWoB++ 3 Web E. Liu et al. (2018)
WebShop 3 Web Yao et al. (2022)
AutoWebBench 3 Web Lai et al. (2024)
OmniACT 1 2 Desktop Kapoor et al. (2024)
DroidTask 1 2 VH, Screen Wen et al. (2023)
AgentStudio 1 3 Desktop L. Zheng et al. (2024)
Mind2Web 1 3 DOM, Screen X. Deng et al. (2023)
OSWorld 2 3 Desktop Xie et al. (2024)
MT-Mind2Web 2 3 HTML Y. Deng et al. (2024)
BrowserGym 2 3 HTML, Screen, Accessibility Tree Drouin et al. (2024)
WorkArena 2 3 HTML, Screen, Accessibility tree Drouin et al. (2024)
AssistGUI 2 3 Screen, Text D. Gao et al. (2024)
WebArena 2 3 Web S. Zhou et al. (2023)
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Appendix B

Dynamic Action Inference

(A) raw image (B) grayscaled image (C) dialated image (D) processed image

(E) raw HTML

<a
class="lsControl–
valign lsLink
urLnkRe-
portGl20
lsLink–text
lsLink–flex
lsLink–
noWrapping"
ct="LN" data-
toolbaritem-
id="WDE3-r"
drag-
gable="false"
id="WDE3"
...>Logout</a>

(F) a filtered HTML tag

Overview 40 80 1080 1065 {
Button 115 210 340 275 "Month",
Button 360 210 575 275 "Week",
Calendar 115 330 750 990 "April" {

Icon 165 370 170 400 "Backward"
Icon 665 370 670 400 "Forward",
Button 213 500 273 565 "Mo 1. CW14",
Button 288 500 348 565 "Tu 2. CW14",
...

},
},
Button 65 1150 280 1225 "Update",
Button 300 1150 480 1225 "Check",
Button 500 1150 650 1225 "New",
Button 700 1150 900 1225 "Favourite",
...

(G) inferred representation

FIGURE B.1: The first row Figure B.1 (A) to Figure B.1 (D) shows dy-
namic action inference from raw image until a filtered image with
computer vision approaches. The second row Figure B.1 (E) and Fig-
ure B.1 (F) shows dynamic action inference from an HTML represen-
tation reducing tags to interactable tags. Figure B.1 (G) represents the
inferred representation achievable by advanced vision language pro-

cessing methods. For the tabular representation see Table 4.1.
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