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Abstract—This study addresses the challenge of automated
thyroid cell analysis in the presence of incomplete expert annota-
tion. It builds on the CellSAM model used for segmentation and
adds a kernel-based approach for classification. Recognizing the
limitations of conventional methods due to sample scarcity and
label ambiguity, this research integrates clustering algorithms to
overcome label ambiguity and improve diagnostic accuracy. As
a consequence of the discrepancy in the diagnostic evaluation
of pertinent cells resulting from the manual validation of the
segmented mask, a metric was devised to capture the attributes
of cancerous cells. Relevant features of cancer cells were identified
and used together with the prior knowledge of annotated cells
to validate the results of the clustering algorithms. Cancerous
cells can be detected using a specific dye that binds to the
cells, enabling the monitoring of cell growth and the analysis of
fluorescence intensity values to identify these cells. The intensity
values, which are critical for identifying cancerous cells, were
first normalized. These normalized values were then transformed
using a linear kernel and subsequently used as input for the
clustering algorithms. Semi-supervised learning with clustering
algorithm gave too much weight to already annotated cells and
did not improve the quality of the dataset. Spectral clustering
showed the best result based on the defined metric used in this
work.

I. INTRODUCTION

The incidence rate of thyroid cancer is one of the highest
among cancer types in the United States [45]. In the past
decade, there has been a significant advancement in the un-
derstanding of the molecular mechanisms underlying thyroid
tumour formation. The identification of distinct genetic alter-
ations and the discovery of novel oncogenic pathways have
greatly enhanced our understanding of the molecular biology
involved in tumorigenesis and malignant transformation in the
thyroid gland [49]. In a recent study fluorescence polarization
imaging with methylthioninium chloride has been used to
detect diagnostically relevant cells. Methylthioninium chloride
(MB) is a method to stain cells [15] and is closely aligned with
clinical applications. Fluorescence polarization (Fpol) which
uses MB is an optical technique that is able to detect cancer
cells more accurately. It measures how light, emitted from
methylthioninium chloride, behaves when it interacts with

cells. The feature attaches better to cancerous cells, affecting
how the light is polarized. This change in polarization can be
measured and visualized in an image. Higher values indicate
the presence of cancer [15]. The instrumentation of this unique
technique is patent protected [47]. In the same study, a 2D U-
Net model was trained on an ambiguous dataset provided by
experts to segment and classify diagnostically relevant thyroid
cells [15]. Whilst on average it exceeded good results, there
were some challenges that will be addressed in this paper.

In the field of artificial intelligence, three categories of AI
can be distinguished: Artificial Narrow Intelligence (ANI),
Artificial General Intelligence (AGI), and Artificial Super
Intelligence (ASI). [21].The category ”Artificial Narrow Intel-
ligence” (ANI) is used to describe AI systems that have been
designed to perform specific tasks or solve particular problems
[10] such as the classification of thyroid cells. Medical experts
utilise a range of imaging techniques to diagnose patients
underscores the importance of prompt disease detection to
improve survival rates. The application of artificial intelligence
has yielded promising results in the field of diagnostics, with
notable improvements in diagnostic procedures [27]. A review
of the literature in the medical fields revealed that the division
of the classification and segmentation tasks in the context of
medical images is an effective approach [19].

II. PROBLEM DESCRIPTION

The utilisation of machine learning in a practical context
presents a distinct set of challenges compared to its deploy-
ment in research environments, particularly with regard to data
quality and quantity. In industrial settings, the collection of
data samples and labels is often challenging due to the costs
and complexities associated with data gathering. This results
in incomplete or missing labels within the resulting datasets
[40].

• The manually annotated diagnostically relevant cells used
in this thesis resulted in masks that did not accurately
capture the cell outlines, leading to imprecise Fpol values
and inaccurate mask representations.



• Cells that were not annotated but potentially diagnosti-
cally relevant contributed to an inaccurate ground truth,
resulting in the detection of unannotated yet relevant cells
or failed to detect the annotated cell entirely. Conse-
quently, the loss function did not adequately represent
the problem, failing to capture all diagnostically relevant
cells within an image.

• The dual representation in the dataset of the classification
and segmentation task lead to a more complex learning.

The objective of this paper is to enhance the segmentation and
classification of diagnostically relevant cells using a kernel-
based approach that could be adapted to different applications.
As manual improvement and enhancement of the dataset is
costly, we propose utilising the foundation model CellSAM
to imrpove the segmentation of thyroid cells [42]. In order to
enhance the detection of diagnostically relevant thyroid cells
and to expand the data set with supplementary annotations,
we employed a linear kernel as the input for binary clustering
to improve the ground truth.

III. RELATED WORK

As of 2023, AI has achieved levels of performance that
surpass human capabilities across a range of tasks [25]. The
emergence of foundation models, including BERT, DALL-E
and GPT-3, has brought an advance in the field of AI. Trained
on vast and diverse datasets, these models have demonstrated
remarkable capabilities in performing a multitude of down-
stream tasks, as evidenced in recent research [3]. In 2023, Meta
researchers introduced the model Segment Anything (SAM)
which has been trained on a dataset with 1 billion masks [17].
The model has demonstrated an enhancement in the efficiency
of human-performed segmentation tasks. The proficiency of
the foundation model SAM highlights the critical importance
of leveraging a comprehensive and robust dataset to effec-
tively support human tasks [25]. The downside for SAM in
the application of cellular image segmentation is the default
uniform grid prompting strategy which leads to inaccurate
cell segmentation, due to varying cell densities. In 2024,
CellSAM was introduced as a model for cell segmentation.
A comprehensive dataset encompassing various archetypes
was used for training. CellSAM integrates SAM’s Vision
Transformer (ViT) for feature extraction and uses CellFinder
with a Anchor DETR Framework to generate bounding boxes
as prompts for SAM to enumerate masks. [14]

The utilisation of a pretrained semantic segmentation model
requires in many instances much less data to adapt the model
to a specific task or data set compared to training from scratch.
The segregation of the semantic and classification tasks is
expected to diminish the complexity of the model. The sep-
aration also allows for the subsequent utilisation of extracted
cells as a template for manual annotations, thereby reducing
the time required for manual annotation and facilitating the
enhancement of the dataset.

In the preceding work [15], a 2D U-Net was trained on
the entire image. The encoder-decoder architecture comprises
a pixel-wise softmax function, which converts feature maps

into probability distributions over classes for each pixel [36].
The ambiguity inherent to the labels within the data set made
it challenging to achieve an accurate prediction. In order to
address this issue, we designed a kernel-based approach with
the aim of increasing the quality of the ground truth.

A. Segmentation
Semantic segmentation involves identifying objects within

an image at a pixel level, distinguishing between individual in-
stances of the same class while preserving spatial information
[7]. Classification on the on the other hand focuses on the
global context aiming to classify all the extracted pixels on
a global or local image representation [35]. This hierarchical
approach is analogous to natural language processing (NLP),
where the initial step of tokenization divides text into words,
which are then processed using techniques such as named
entity recognition (NER) to derive their meaning [24]. In
semantic segmenation local and global context has been used
to identify a specific object [29]. While segmentation tasks in
computer vision are similarly structured to classification tasks,
the underlying problem to be solved is distinct. Segmentation
addresses the question of where to search for a specific object
(local context), whereas classification uses this knowledge to
determine what to search for (global context). It has also
been shown that the aforementioned approach to segmentation
and classification, which entails the splitting of these tasks,
explains the more accurate and stable learning [8].

Transfer learning has demonstrated that the freezing of
features and the utilisation of the output of the previous task
for a new one results in expeditious training and a reduction in
computational complexity and more accuracy. This approach
is based on a hierarchical training model, which allows for
the separation of segmentation and classification tasks [28].
Although this approach is capable of distinguishing between
two tasks, it is unable to address the issue of improving
the frozen layer. In light to separate the global and local
context, we splitted the segmentation and classification task.
We propose a simple approach to enhance the quality of the
dataset reflecting to reduce the computational complexity [3].

B. Feature Extraction
Highly aggressive thyroid cancer exhibits a degree of homo-

geneity, it can be assumed that other cancer cells demonstrate
also elatively uniform characteristics, although not entirely
homogeneous [46]. Under this assumption we allowed to focus
on prediction per cells instead of the prediction per image.
The maximum number of cells in an image predicted with the
CellSAM model [14] was 266. Consequently, the training set
could be augmented by a significant number. The utilisation
of morphological features in other medical application like
endometrial cytology enhances the diagnostic accuracy and
prognostic prediction [30]. The fluorence polarization method,
which enables the capture of the dye retained for an extended
period of time in cancer cells, was conducted using a fine-
needle aspiration [15]. To improve pathological feature extrac-
tion of medical images Gaussian shaped probability models



Fig. 1. A comprehensive overview of the cell segmentation and classification pipeline, which has been developed with the objective of facilitating the detection
of diagnostically relevant thyroid cells, is provided herein.

can help to enhance the quality of images and therefore
lead to better diagnosis [20]. The captured intensity values
can be normalised by utilising the histogram of the intensity
values of the diagnostically relevant cell in conjunction with
a probability distribution function (PDF). A PDF describes
the distribution of values of a random variable [41]. By
normalizing the intensity values, the distribution’s mean and
variance are standardized to 0 and 1 [4]. In this application,
the intensity changes that are characteristic of cancerous cells
can be employed to standardise the differentiation between
multiple cells.

C. Classification

The previously used 2D U-Net model, which had been
trained on an ambiguous ground truth dataset, was subjected
to a data selection process to reduce noise and potentially
improve the prediction. Only high-quality cells were included
in the selected dataset [15]. The 2D U-Net result was validated
by experts and rated as ”very useful”. However, due to the
limitations of the dataset, which consisted of only 90 available
images, the model’s generalizability could not be demonstrated
[44]. This result confirmed the importance of enhancing the
quality of the dataset prior to prediction [15]. As discussed



in the section Feature Extraction III-B the intensity value
histograms for each cell were normalised into probability
density functions, which were employed as a feature for each
cell in the present study.

Kernels are functions that are utilized for the purpose of
computing a similarity measurement between data points. In
order for a kernel to be classified as symmethodological, it
must be attained through the mechanism of multiplication. A
further property of kernels is that the resulting inner product
in a high-dimensional space is a valid, positive semi-definite
kernel. Consequently, it is necessary that the kernel satisfy
Mercer’s theorem [26].

The efficacy of kernel methodologies has been demonstrated
in scenarios that necessitate the enhancement of generalization
capabilities and in situations where the availability of estima-
tion is uncertain. This renders them a more suitable option for
datasets that are limited in quality and size, particularly when
utilized for deep learning methods [37]. The strength of kernel-
based approaches also lies in the invariance of transformation
[33]. This indicates that a transformation is unlikely to affect
the diagnostic relevance of a cell, thereby supporting the
selection of the kernel transformation invariant option.

D. Classification
Data clustering is a technique that is employed in a variety

of fields for the purpose of organising objects into groups, or
clusters, based on a measure of similarity between data points.
The application of clustering can assist in the comprehension
of the intrinsic structure of the data, the identification of
patterns, and the streamlining of the data for subsequent
analysis [34]. It can thus be posited that this methodology
may be employed for the discovery of analogous, unclassified
cell clusters within a given dataset.

1) Agglomerative Clustering: The Agglomerative Cluster-
ing algorithm is used to generate clusters from a single object.
It merges the two most similar clusters and therefore builds
hierarchical clustering by successive merging or splitting
[11].The approach is capable of handling clusters of varying
shapes and sizes, which was assumed to be suitable for the
binary prediction of thyroid cells.

2) BIRCH: The Balanced Iterative Reducing and Cluster-
ing (BIRCH) algorithm uses a clustering feature tree (CF-
tree) which maintains a compact summary of the dataset. The
algorithm is used to process larger datasets due to its efficient
and scalable nature [50]. Although the dataset employed in this
study is not particularly extensive, the hierarchical structure
may offer insights into the formation of subgroups within the
data.

3) Spectral Clustering: Spectral clustering is a data re-
duction technique that employs eigenvalues derived from a
similarity matrix to facilitate subsequent cluster analysis. It
is adequate for handling non-convex [43] and convex [38]
clusters, and is capable of capturing the intrinsic data structure
in a way that allows for effective cluster identification [43].
The shape of a cell can be convex or non-convex, when the
form of the cancer cell is irregular and uneven [12]. Because

of these properties, the algorithm may be suitable for the
detection of diagnostically relevant cells.

4) KMeans: The K-means algorithm used to cluster a set
of data points was introduced in 1967. Each data point belongs
to the cluster with the nearest mean [23]. K-Means is still used
as an effective clustering methodology in the medical field [2]
and could therefore be suitable for cell images.

5) Mini Batch KMeans: The computational challenges of
KMeans have been addressed with the Mini Batch KMeans
algorithm. The algorithm can handle large datasets efficiently
using random and small batches.The random sampling helps
to explore different parts of the data that might avoid solution
in local minima [39].

IV. METHODOLOGY

Data cleaning is a fundamental issue to be solved for
researcher in the medical field to avoid incorrect clinical
measurements [32]. Accordingly, we devised an approach that
is conducive to improving data quality and can be tailored to
categorize the thyroid cells that require analysis. This section
also emphasises an approach which distinguishing between the
segmentation and classification tasks. The following section
illustrates the methodology used to improve the accuracy of
diagnostically relevant cell detection.

A. Segmentation
The segmentation of cancerous cells in microscopy images

is a common step in quantitative tissue analysis for both
research and diagnostic purposes [6].

The manual annotations can be used to train machine
learning algorithms to automate this process. However, if the
annotations are incomplete and doesn’t represent the task
which needs to be solved, the training potentially leads to
inaccurate results. Since the manual correction of the previ-
ously annotated images through expert is time consuming and
also costly, the problem was solved computationally. CellSAM
tends to segment cells liberally. As a result, the result is sen-
sitive, meaning that most cells are found, but some segmented
cells may not be diagnostically relevant. The quality of the
dataset could be enhanced by improving the representation
of cells that are relevant for diagnostic purposes. Each image
used in this project is recorded as an 8-bit grayscale image
with a resolution of 1000x1000 pixels in the TIFF file format.
The overall cell mask for each image was split into individual
masks after using CellSAM for segmentation. This process
increased the dataset from 139 images to 9369 statistical
representations of each cell, of which 1870 were manually
annotated as diagnostically relevant cells.

B. Feature Extraction
In the context of manual analysis, the Fpol value plays a role

in determining whether a cell should be classified as diagnos-
tically relevant [15]. The Fpol value incorporates the intensity
values of a given cell. In this project, a kernel was employed to
represent the intensity changes within an image. Following the
segmentation process, the quality of the clustering algorithm



should have been assessed using a small dataset comprising
20 fully annotated images. In order to evaluate the efficacy of
the assessment, a single image was selected for analysis by
two experts. In light of the considerable divergence of expert
opinions on this single image, it was deemed necessary to
adopt an alternative approach to the validation of the results.
The efficacy of the utilized clustering algorithms for binary
classification was substantiated through a process of validation
that involved the integration of prior knowledge regarding the
annotated diagnostically relevant cells with statistical data that
reflected the diverse characteristics of a potential cancer cell.

1) Kernel Feature: We processed the co-polarized and
cross-polarized images which after masking represented an
image for every cell. The intensity values of these images
range from 0 to 255. To construct the histogram, we divided
the intensity range into bins of size 5 units and calculated the
probability density function. which is calculated as follows

f(x) =
d

dx
F (x)

F (x) =

∫ x

−∞
f(t) dt

The function f(x) = d
dxF (x) represents the rate of change of

the accumulated quantity, while F (x) =
∫ x

−∞ f(t) dt denotes
the integral of f(t) from negative infinity to x. [18]

The created histograms represents the distribution of pixel
intensities in the images for every cell. By applying it to
every cell separately, we were able to reduce certain noise by
employing. After this normalization a linear kernel matrix K
was computed by multiplying the concatenated feature matrix
X with its transpose XT :

K = XXT

[13]
The process was applied to the co-polarized and cross-

polarized images separately and in combination, with the
objective of evaluating the performance of the kernels at a
later stage.

2) Feature for Metric Calculation: Cancer cells release
exosomes into the surrounding environment. Exosomes are
small vesicles that facilitate the transportation of various
biomolecules, including proteins. The quantity and type of
released proteins can be quantified. The intensity of cellular
fluorescence, which can be measured using a fluorescent dye,
is a reliable indicator of cancerous cells. This is because
cancerous cells often secrete a greater number of exosomes
and contain specific proteins that can be visualized using the
fluorescent dye. This characteristic renders them valuable for
the diagnosis and monitoring of cancer [48]. Accordingly,
the Fpol values, which quantifies the intensity levels of the
co-polarized and cross-polarized images, were selected for
assessment of the efficacy of the diagnotically relevant cell
detection.

Fpol =
Ico −G · Icross

Ico +G · Icross

The calculation includes the mean co-polarized (Ico) and
cross-polarized (Icross) image for each cell. In the preceding
study, the fluorescence polarization value, denoted as Fpol, was
determined using a calibration factor, G. This factor was set
to a value of 0.75, consistent with the methodology applied in
the current analysis [15].

The width-to-height ratio of cells, which compares the mi-
nor length (width) to the major length (height), is a parameter
utilized in the classification of cancerous cells [6].

Ratio Width Height =
minor length
major length

In this context, the term ”major length” refers to the length
of the major axis of the ellipse, while ”minor length” denotes
the minor axis of the ellipse.

The measurement of circularity can be employed as a
means of detecting cancer cells, given that cells with greater
metastatic potential are more susceptible to deformation [16].

Circularity =
4π × Area
Perimeter2

The area represented the number of non-zero pixels, while the
perimeter indicated the total length of the contour [51].

An additional morphological feature that can be utilized to
illustrate the intricacy of the shape is the outline length of a
cell.

Outline length = n*l

In this equation, the variable ”n” represents the number of
sides with the same length, while the variable ”l” represents
the length of the sights.

In the context of a malignant diagnostic procedure, the size
of a cell appears to be a significant factor in the classification
process [22].

Size (µm) =
∑
i,j

M(i,j) ∗ pixelsize

In this calculation, i represents the index of the row and j the
index of the column in an image. The pixel size utilized in
this study was 0.205, as specified by the experts who provided
the images.

The above features tried to capture the characteristics of the
cancer cells. The information was used for the performance
measurements of the clustering results.

V. MODEL DEVELOPMENT

We used multiple clustering algorithm which are suitable
for binary clustering problems to predict the new ground
truth. We tried multiple linear kernels of the co-polarized
and cross-polarized images as input values for the clustering
algorithms, with the objective of predicting the new label.
Three distinct kernel configurations were employed for the
analysis of intensity values in cell-masked images obtained
from co-polarized and cross-polarized microscopy. The initial
kernel contained the histogram of intensity values derived from
the cell mask of the co-polarized image, the second contained
the histogram from the cell mask of cross-polarized image,



and the third was a composite kernel integrating both the co-
polarized and cross-polarized intensity values into a unified
histogram for comprehensive analysis.

In the initial stage of the clustering algorithm, a basic
configuration was employed. The number of clusters was set to
two for the following algorithms: Agglomerative Clustering,
BIRCH, Spectral Clustering, K-Means, and Mini Batch K-
Means. This setting permitted the differentiation of diagnosti-
cally relevant and diagnostically irrelevant cells. A minimal
threshold was selected for the BIRCH clustering to merge
smaller clusters into larger ones and therefore potentially
enhance the cluster quality. The clustering models were em-
ployed with and without label propagation, with the objective
of potentially leveraging prior knowledge.

1) Evaluation Metric: In order to evaluate the results, we
integrated the existing knowledge about the annotated cells
with the metrics that define their characteristics. To establish
a metric, it was essential to define the criteria for a favorable
and an unfavorable prediction. Because of the absence of prior
knowledge, the cell characteristics weren’t weighted against
each other. We utilized a straightforward calculation to utilize
the characteristics as a metric for evaluating the efficacy of
the predictions. In scenarios where the data exhibits minimal
variation, the geometric mean is more closely aligned with the
unbiased outcomes therefore used in this work [9] .

Every feature used for the calculation of the clustering
metric (Performance Label Ambiguity) was scaled to a range
between 0 and 1 to ensure that each feature contributes equally
to the analysis.

Scalingi =
xi − x̄

s

[1]
In the calculation above Scalingi represents the z-score, xi

the ith value, x̄ the mean and s the standard deviation.
After scaling the features, they were multiplied together.

Featuresi = Fpoli×Size (µm)i×Circularityi×Ratio Width Heighti×Outline Lengthi

The characteristic value for each feature, Characteristicsi,
is then calculated as the geometric mean of the features:

Characteristicsi = Features
1

Number of featuresi
i

Favorable Prediction The detection of a cell as a diag-
nostically relevant cell, subsequently annotated by experts,
was considered a positive prediction. Where yi represents the
ground truth labels and ŷi the predicted labels.

The formula for calculating True Positives (TP) is given by:

TP =

n∑
i=1

(yi = ŷi ∧ yi = 1)

In instances where a cell was not manually annotated, but
the calculation of its characteristics fell within the range of
the experts decision, the cell was assumed to be correctly
recognised by the algorithm, despite the experts having failed
to label it. min(Characteristicsi) represents the lower bound

and max(Characteristicsi) the upper bound of the range where
the experts decision were laying.

Correct Recognized Missed Cells =

n∑
i=1

(min(Characteristicsi) ≤ ŷi ≤ max(Characteristicsi))

Unfavorable Prediction In the event of the clustering
algorithm failing to detect the annotated cells, this should be
regarded as an unsuccessful outcome.

FN =

n∑
i=1

(yi ̸= ŷi ∧ ŷi = 0)

If the Characteristicsi of the predicted cell didn’t lay within
the range of the experts decision and in absence of manual
annotation, the cell was deemed to have been incorrectly
identified by the algorithm.

Wrong Recognized Cells =

n∑
i=1

(min(Characteristicsi) ≥ ŷi ≥ max(Characteristicsi))

Ambiguity Metric In order to create a metric that fulfils
all of the aforementioned purposes, namely the favourable
and unfavourable factors, all the elements were combined to
construct a metric that addresses the issue of label ambiguity.

Performance Label Ambiguity =

(
TP + Correct Recognized Missed Cells

FN + Wrong Recognized Cells

)
The metric named ”Performance Label Ambiguity” was

employed to identify the most effective clustering algorithm to
detect labeled and missed labeled diagnostically relevant cells.

VI. RESULTS

As mentioned in the section on model development, we used
the standard settings provided by scikit-learn [31] for nearly
every clustering algorithm. The algorithm that demonstrated
the highest performance was then employed to train on mul-
tiple hyperparameters.

Fig. 2. Top 3 Results Cluster Algorithms

Since spectral clustering gave good performance compared
to other clustering algorithms, we used this algorithm for
hyperparameter tuning. The three best results are shown in the
figure 3. The findings revealed the importance of assigning
greater significance to features that are more effective in
detecting cancerous cells, to reflect in the performance metric.
The preliminary results of the comparative analysis of multiple
algorithms demonstrated better accuracy, as evidenced by a
higher number of correctly identified cells that had also been
manually annotated.



Fig. 3. Top 3 Results Hyperparametertuning Spectral Cluster

VII. DISCUSSION AND FUTURE WORK

This study necessitated a considerable amount of time for
the data preparation procedures. Although the manual annota-
tions and matching mask were available for consultation, the
co-polarized and cross-polarized images were only accessible
in multiple PowerPoint presentations. Accordingly, the images
were prepared for utilization in this study. Furthermore, the
manual and CellSAM masks had to be separated into indi-
vidual cell masks. In order to validate the segmented result
of CellSAM, it was necessary to identify the matching cell
mask from the manual annotation. Additionally, the individual
cell masks extracted from the segmented result of CellSAM
were applied to the entire image, as each image was assigned
a unique cell mask number for identification purposes. As a
result, the extensive preparatory work limited the scope of
our analysis, preventing a comprehensive evaluation of various
clustering algorithms. In the future, testing additional hyper-
parameters on multiple clustering algorithms could further
enhance the robustness and accuracy of our findings.

The validation of one segmented image by experts resulted
in divergent answers. Therefore, the uncertainty in the man-
ual annotations is still present. The predicted result of the
clustering algorithm should be validated by experts, despite
the potential for uncertainty in manual annotations due to
the practical nature of the application. If the prediction is
found to be insufficient, the quality of the dataset may need
to be manually improved or the performance metric need to
be adjusted.

The influence of the utilized features in the metric, desig-
nated as Performance Label Ambiguity, on the identification of
diagnostically pertinent cells remains ambiguous. In the event
that particular cell attributes exert a pronounced impact on
the outcomes, it would be advantageous to ascribe weights
to these attributes. This refinement would facilitate a more
comprehensive comprehension of the results.

The labeled dataset and the clustering algorithm employed
in this project facilitate the selection of appropriate cell masks
from CellSAM. These cell masks can be integrated into a
unified mask for each co-polarized and cross-polarized image.
Subsequently, the consolidated masks can be applied to the 2D
U-Net, which was trained in previous work. This application
enables a comparison of the performance outputs between this
project and earlier efforts.

In the medical field, any judgment can have bad conse-
quences for a patient. Based on examination, a doctor will
form a reasonable explanation [5]. Although the clustering
algorithm employed in this study may enhance the ground
truth, it is deficient in terms of elucidating the rationale behind
the decisions made. In future research, incorporating additional

metrics to explain the classification could facilitate not only
prediction but also the understanding of the reasoning behind
the prediction.

In order to make optimal use of the heterogeneity present
in the data, future models should not only focus on individual
cells but also consider the entire image, thus preventing the
loss of valuable global contextual information. Implementing
this approach could potentially incorporate the comprehensive
features of the image into the analysis, thereby enhancing the
model’s diagnostic capabilities.

In this study, we implemented a hierarchical approach,
utilizing segmented masks for classification to mitigate noise.
To fully leverage the benefits of this hierarchical method,
which incorporates both global and local contexts for clas-
sifying diagnostically relevant cells, an analysis comparing
single and multi-head networks would be beneficial. Such
an investigation could help determine whether a dual-headed
approach enhances the segmentation and classification tasks.
Additionally, exploring whether a hierarchical strategy—initial
segmentation followed by classification—outperforms a se-
quential approach could provide insightful findings.

A further area of interest is the computational cost and
data requirements of the various models under consideration.
In particular, it would be interesting to evaluate the efficacy
of a unified model that is capable of both classification and
segmentation, in comparison to two distinct models that have
been developed for each of these tasks. This analysis will
facilitate an understanding of the trade-offs inherent to model
complexity versus performance.

VIII. CONCLUSION

The research presented a practical approach to potentially
enhance the quality of the dataset provided by experts in
the medical field. The separation of the segmentation and
classification processes to extract pertinent features helped to
reduce noise within the image.

The foundation model CellSAM was employed for the
purpose of segmenting thyroid cells. Thereafter, a linear kernel
was applied to the cells extracted from the aforementioned
segmentation, which were then utilized as input for the clas-
sification of diagnostically relevant thyroid cells.

In this study we have addressed the significant challenges
with sample scarcity and label ambiguity, that are inherent to
manual annotations. The proposed approach has the potential
to improve the quality of the dataset. Although the initial
result obtained with the basic setting appeared promising, it
is imperative to seek expert validation before drawing any
definitive conclusions. Following the validation process, it may
be necessary to make adjustments to the manual annotations
and metric calculation in order to evaluate the results in a more
robust manner. Subsequently, this approach could be extended
to other applications where an improvement in data quality
is necessary and the use of prior knowledge to assess results
would be advantageous.

With slight adaptation, extracting features from images and
using a machine learning approach for relevant characteristics



could also be implemented in various other fields. Overall,
the approach we have used shows potential for enhancing
diagnostic processes in medical contexts, potentially paving
the way for more effective and timely cancer treatments.
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APPENDIX A
SEMI-AUTOMATIC ANNOTATION AND LABEL AMBIGUITY

We hypothesized, that a semi-automatic approach for cell
annotation could be employed. Instead of manually delineating
diagnostically relevant cells, the clinicians would only flag
individual cells as being diagnostically relevant, being in
focus, and having the approximately correct delineation. We
prepared a subset of the available 139 frames for ease of access
by numbering each cell and providing an Excel file with drop-
down selection cells for each category and cell ID to maximize
user experience. Two domain experts, who were trained by the
developer of the annotation protocol used in [15], performed
the task. Processing a single frame with 33 cells took them
33 and 40 minutes, respectively. After a single frame, we
rejected the approach because it was too time-consuming. The
results, however, indicate the very high degree of ambiguity
of the manual annotation, further advocating for data-driven
approaches.


