

Supplementary Course (EVA) at ZHAW School of Engineering

Title:Computational science and engineering for air
conditioning systemsShort Code:rEVA_CE4AC

ECTS Credits	3				
Profile	Energy & Environment (EnEn)				
Responsible Institute /Centre	Institute of Energy Systems and Fluid Engineering (IEFE)				
Responsible lecturer and contact informtion	Frank Tillenkamp: till@zhaw.ch, Christian Ghiaus: christian.ghiaus@insa-lyon.fr				
Type and duration of examinations	33.3% Written exam 1h, w/o documents on 33.3% Written report of group project due on 33.3% Oral presentation of group project on	30/05/2025 28/05/2025 30/05/2025			
Start date and duration	Semester: Spring Detail: 21/04/2025 09:00 - 28/04/2025 18:00				
Location	Winterthur				
Course type	BLOCK-COURSE Face to face lectures and tutorials 8h/day First 2 ½ days: Face to face accompanied project 8h/day Next 2 ½ days: Autonomous group project	20 h (22 %) 20 h (22 %) 50 h (56 %)			
	28/04/2025 – 28/05/2025 Total	90 h (100 %)			
Language of instruction	English				
Short description (max. 300 characters)	Air conditioning increases productivity and comfort but it is responsible for about 15 % of total energy consumption. The course develops computational skills in Python for practical optimization of air conditioning systems coupled to buildings.				
Contents and Learning Objectives	Face to face Lectures Module 1: Psychrometrics (numerical calculation of moist air properties, typical transformations). Thermal comfort. Module 2: Modelling of typical elements of air conditioning systems Module 3: Modelling and simulation of air conditioning systems coupled to buildings				
	Tutorials Tutorial 1: Calculation of moist air properties				

Knaa, 21.05.24

Supplementary Course (EVA) at ZHAW School of Engineering

	Tutorial 2: Numerical modelling of air conditioning systems			
	Tutorial 3: Coupling air conditioning systems to buildings			
	Accompanied individual project:			
	Free-cooling			
	Air mixing and heating Air-mixing, heating, humidification			
	Heat recovery, heating, adiabatic humidification			
	Heat recovery and cooling			
	Autonomous group project: The students will define their own subject on indoor climate control (temperature and humidity): a building and its air conditioning system will be modelled. On this model, optimisation of design parameters and energy management will be done.			
	Examples of projects: detached house, school, office building, green house, supermarket, research laboratory, restaurant.			
Prerequisites	Subjects useful at undergraduate level: linear algebra, thermodynamics, heat transfer, computer programming.			
	The course is self-contained: all teaching materials are provided as PDF (bibliography, supporting materials and slides for lectures and tutorials in Python).			
	Bibliography G. Strang (2007). Computational Science and Engineering, Wellesley- Cambridge Press, ISBN-10 0-9614088-1-2			
Literature	ASHRAE Fundamentals, chapters F01 Psychrometrics, F07. Fundamentals of controls, F09 Thermal Comfort, F16 Ventilation and Infiltration, F17 and F18 Heating and Cooling Loads			
	C. Ghiaus (2014). Linear algebra solution to psychometric analysis of air- conditioning systems, Energy vol. 74, pp. 555-566			
	 C. Ghiaus (2022) Computational psychrometric analysis as a control problem: case of cooling and dehumidification systems, International Journal of Building Performance Simulation, 15(1), pp. 21-38, https://doi.org/10.1080/19401493.2021.1995498 C. Ghiaus. (2021). PsychroAn_cool: Psychrometric analysis of cooling systems as a control problem. In Journal of Building Performance Simulation (0.0.0, Vol. 15, Number 1, pp. 21–38). Zenodo. https://doi.org/10.5281/zenodo.5236450 			
	C. Ghiaus (2022). Computational psychrometric analysis of HVAC systems: tutorials, <u>https://github.com/cghiaus/PsychroAn_tuto</u>			

Supplementary Course (EVA) at ZHAW School of Engineering

Special requirements	Every student needs to have a laptop during the course.			
	Before the beginning of the course, students need to have Python (<u>Anaconda</u> <u>distribution</u> is recommended) on their laptops.			
Offer for profiles	Aviation (Avi)		Business Engineering (BE)	
	Computer Science (CS)		Data Science (DS)	
	Electrical Engineering (EIE)	\boxtimes	Energy & Environment (EnEn)	\boxtimes
	Mechanical Engineering (ME)	\boxtimes	Mechatronics & Automation (MA	\boxtimes
	Medical Engineering (Med)		Photonics and Laser Engineering (Pho)	
	Information and Cyber Security (ICS)		Civil Engineering (CE)	