

Supplementary Course (EVA) at ZHAW School of Engineering

Title: Computational science and engineering for intelligent energy buildings Short Code: rEVA_CE4IB

ECTS Credits	3		
Profile	Mechanical Engineering (ME)		
Responsible Institute /Centre	Institute of Energy Systems and Fluid Engineering (IEFE)		
Responsible lecturer and contact informtion	Frank Tillenkamp: till@zhaw.ch, Christian Ghiaus: christian.ghiaus@insa-lyon.fr		
Type and duration of examinations	33.3% Written exam 1h, w/o documents on033.3% Written report of group project due on033.3% Oral presentation of group project on0	6/12/2024 04/12/2024 06/12/2024	
Start date and duration	Semester: Autumn Detail: 28/10/2024 09:00 – 01/11/2024 18:00 End date (exam) 06/12/2024 09:00 – 12:00		
Location	Winterthur		
Course type	BLOCK-COURSE Face to face lectures and tutorials 8h/day 24 First 2 ½ days: Face to face accompanied project 8h/day 24 Next 2 ½ days: Autonomous group project 04/11/2024 – 04/12/2024 Total	0 h (22 %) 0 h (22 %) 50 h (56 %) 90 h (100 %)	
Language of instruction	English		
Short description (max. 300 characters)	Buildings are responsible for about 40 % of the energy consumption and CO ₂ emissions. The course develops computational skills in Python for modelling and problem solving of coupled heat transfer with special applications to optimize energy consumption for indoor climate control.		
Contents and Learning Objectives	 Face to face Lecture module 1 Thermal transfer: conduction, convection, and Lecture module 2 Continuous and discrete models. Thermal networks. Transforming the thermal networks into state functions. 	d radiation. e-space and transfer	

Supplementary Course (EVA) at ZHAW School of Engineering

	Coupling the models.				
	 Tutorial 1: Read weather data and calculate solar radiation 1) Introduction to linear algebra and tools (Python, Numpy, Matplotlib). 2) Use Python for reading (weather) data. 3) Calculate the solar load. 				
	 Tutorial 2: Simple wall 1) Physical analysis and mathematical models. 2) Discretization of mathematical models. 3) Numerical stability. 4) Implementation. 				
	 Tutorial 3: Simple building in free-running: controlled natural ventilation 1) Physical analysis and mathematical models. 2) Discussion of examples 3) Implementation. 				
	 Tutorial 4: Simple building controlled by an HVAC system 1) Physical analysis and mathematical models. 2) Discussion of examples. 3) Implementation. 				
	Accompanied individual mini-project: Intelligent control of a single zone building				
	Autonomous group project: Students define their own subject on indoor climate control; for example: - dynamic insulation, - dynamic solar protection, - control of floor-heating and fan coils, - influence of set-point setback, - control of intermittently heated buildings, - model predictive control.				
	Required (undergraduate level): linear algebra, calculus, thermodynamics, heat transfer, computer programming.				
Prerequisites	Desirable (but not compulsory): dynamic systems, control engineering, programming in Python.				
Literature	The course is self-contained: all teaching materials are provided as PDF (bibliography, supporting materials, slides for lectures, and tutorials in Python).				
	 G. Strang (2007) Computational Science and Engineering, Wellesley- Cambridge Press, ISBN-10 0-9614088-1-2 				

Supplementary Course (EVA) at ZHAW School of Engineering

	 J.A. Clarke (2001) Energy Simulation in Building Design, 2nd edition, Butterworth Heinemann, ISBN 0 7506 5082 6 				
	 C. Ghiaus (2013) Causality issue in the heat balance method for calculating the design heating and cooling load, Energy, vol. 50, pp. 292-301 				
	 Ghiaus, C., & Ahmad, N. (2020). Thermal circuits assembling and state-space extraction for modelling heat transfer in buildings. <i>Energy</i>, 195, 117019 				
	The Python Tutorial <u>https://docs.python.org/3/tutorial/</u>				
	 Ghiaus, C. (2022). Dyn <u>https://github.com/cg</u> 	• Ghiaus, C. (2022). Dynamic models for building energy management, <u>https://github.com/cghiaus/dm4bem</u>			
	Every student needs to have a laptop during the course.				
Special requirements	Before the beginning of the course, students need to have Python (<u>Anaconda</u> <u>distribution</u> is recommended) on their laptops.				
Offer for profiles	Aviation (Avi)		Business Engineering (BE)		
	Computer Science (CS)		Data Science (DS)		
	Electrical Engineering (EIE)	\boxtimes	Energy & Environment (EnEn)	\boxtimes	
	Mechanical Engineering (ME)	\boxtimes	Mechatronics & Automation (MA	\boxtimes	
	Medical Engineering (Med)		Photonics and Laser Engineering (Pho)		
	Information and Cyber Security (ICS)		Civil Engineering (CE)		