Supplementary Course (EVA) at ZHAW School of Engineering Title: Future Networks and Security Short Code: rEVA_FutNWSec | ECTS Credits | 3 | | | | |---|---|--|--|--| | Profile | Computer Science (CS) | | | | | Responsible Institute /Centre | Institute of Applied Information Technology (InIT) | | | | | Responsible lecturer and contact informtion | Dr. Gürkan Gür, gurkan.gur@zhaw.ch | | | | | Type and duration of examinations | Presentations (20 minutes, final one typically within the Information Security Research Group (ISE) at InIT) and a term paper (6 pages, 2-column IEEE conference format). This review paper reports on the problem investigation, related work and its analysis (e.g., weaknesses and strengths), proposed designs and/or contributions in those works, and conclusion. | | | | | Start date and duration | Semester: Autumn/Spring Detail: Frst week of fall and spring semesters, by arrangement | | | | | Location | Winterthur | | | | | Course type | Block Course | | | | | | Contact hours: 16 (hrs) – in-class lectures, guidance and feedback on selected papers and presentations Guided self-study: 24 (hrs) – identifying and discussing the related body of work (i.e., technical papers) Independent self-study: 50 (hrs) – paper reading and literature analysis, writing own term paper, presentation preparation | | | | | Language of instruction | English | | | | | Short description
(max. 300 characters) | The course consists of an introductory session and topic assignment to students (selectable by them). Regular colloquia with all participants to discuss findings and a short paper presentation by one of the students per week; and a final where each participant gives a final presentation on their topic based on their final paper. | | | | | Contents and Learning
Objectives | We read and discuss original research publications in the future networks and security domain. Toward this goal, the topics of interest include, but are not limited to: | | | | | | - 5G and 6G security | | | | | | - Machine learning/AI and network security | | | | | | - Blockchain and security | | | | | | - Drone and satellite networks security | | | | | | - Device-centric and IoT security | | | | ## Supplementary Course (EVA) at ZHAW School of Engineering | | - Secure network softwarization | | | | | |----------------------|--|-------------|---------------------------------------|--|--| | | - Service infrastructure security | | | | | | | - Multi-access Edge Computing (MEC) security | | | | | | | - Trusted computing | | | | | | | | | | | | | | The learning goals of this course are as follows: | | | | | | | You learn about a specific topic in the network security context. You have an understanding of technical challenges, solutions and potential research directions regarding future networks and security. You can identify relevant research work in the literature, read their outcomes (i.e., technical papers), assess and analyze them with critical thinking | You can communicate your findings and your deduced
knowledge in a concise and clear form as talks and written
papers | | | | | | Prerequisites | The module is intended for students with a background in computer networks and information security. Therefore, students should have knowledge of basic IT security topics such as cryptography and network security. Moreover, a good knowledge of computer networks and protocols is expected. | | | | | | Literature | An initial set of papers will be provided, but you can bring your own based on your technical interests in this domain. | | | | | | Special requirements | - | | | | | | Offer for profiles | Aviation (Avi) | | Business Engineering (BE) | | | | | Computer Science (CS) | \boxtimes | Data Science (DS) | | | | | Electrical Engineering (EIE) | | Energy & Environment (EnEn) | | | | | Mechanical Engineering (ME) | | Mechatronics & Automation (MA) | | | | | Medical Engineering (Med) | | Photonics and Laser Engineering (Pho) | | | | | Information and Cyber
Security (ICS) | \boxtimes | Civil Engineering (CE) | | |