
Assessing predictive count data 
distributions
Stephan Kolassa
Swiss Data Science Day, September 16, 2016 Public



© 2016 SAP SE or an SAP affiliate company. All rights reserved. 2Public

Overview

� Context: predicting large numbers of (grouped) low-count numerical target values

– For example: retail sales at store × stock-keeping unit × day granularity – necessary for replenishment

– Could be in a time series forecasting context, or not

� How can we assess whether our predictions are good?

� Please vote for your favorite point forecast accuracy measure in the event app!

� https://gameday.eu.doubledutch.me/?sessiontoken=b70fa787-7ac1-4c29-8a9f-
c220f8ce6cd5&mod=polls&pollId=9441
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Overview

� Context: predicting large numbers of grouped low-count numerical target values

– For example: retail sales at store × stock-keeping unit × day granularity – necessary for replenishment

– Could be in a time series forecasting context, or not

� How can we assess whether our predictions are good?

� However, optimizing (some of) these can lead to systematically biased predictions!

� Better: predict & assess full densities!

� (Full paper here: http://dx.doi.org/10.1016/j.ijforecast.2015.12.004)

“Robust”? Defined? Comparable*? Intuitive?
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fast vs. slow selling 
products
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Means, medians and MADs

� In summarizing any probability distribution…

– The median minimizes the expected absolute error (Hanley et al., 2001)

– The mean minimizes the expected squared error

� Translate this into predicting: given a (correctly specified) predictive distribution…

– Predict the median to minimize the expected MAE/MAD

– Predict the mean to minimize the expected MSE

� Turn this around:

– If you optimize your forecast method or parameters to minimize MAE and the future distribution is 
skewed, your forecast will be biased (Morlidge, 2015)!

– This is particularly relevant for intermittent series (which are usually skewed), but also for non-
intermittent low volume count series

– This also applies to the MASE (Hyndman & Kohler, 2006) and the wMAPE (Kolassa & Schütz, 2007), 
which are simply scalar multiples of the MAD

Part 1: Optimizing 

point forecast accuracy 
measures may yield 

biased predictions
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An example: forecasting Poisson time series
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Forecast to minimize 
the expected MAD

Forecast to minimize 
the expected MSE

Part 1: Optimizing 

point forecast accuracy 
measures may yield 

biased predictions
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Better: forecast full predictive densities!

� These simulated time series all have the same expectation of 2:

� Will a point forecast of 2 actually be useful?

� Not for setting safety amounts… or scenario planning…

� We need to forecast the full predictive density!

� But how do we assess the quality of a predictive density?

Part 2: Predict full 

predictive densities –

how to assess?
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The Probability Integral Transformation (PIT)

� Assume predictive distributions with densities 
�� and cumulative distribution functions ���
� Transform observations ��:

�� ≔ ��� �� ≤ �� = ��� �� = � 
��
��

��
� If the predictive distributions are correct, 
�� = 
� and ��� = ��, then �� ∼ �(0,1) – this can be 

tested (e.g., Ledwina, 1994; Berkowitz, 2001; or others)

Part 2: Predict full 

predictive densities –

how to assess?
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Problem: discrete predictive distributions

� Transform observations ��:
�� ≔ ��� �� ≤ �� = ��� �� = � 
��

��

��
� Even if the predictive distributions are correct, �� will have a discrete distribution if ��� = � is 

stationary!

Part 2: Predict full 

predictive densities –

how to assess?
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Solution: randomize the PIT

� Brockwell (2007), Frühwirth-Schnatter (1996), Liesenfeld et al. (2006), Smith (1985)

� Set ��� −1 ≔ 0, and draw uniform ��:
�� ∼ � ��� �� − 1 , ��� ��

� Then ��� = �� again implies that �� ∼ �(0,1)

Part 2: Predict full 

predictive densities –

how to assess?
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Example: Poisson vs. negative binomial

Data driven smooth tests for 
uniformity (Biecek & Ledwina, 

2012):

test statistics WT and p values

� Actuals and Hypotheses are either 
Pois(0.4) or NegBin(0.4,0.2)

– In both cases, the median and MAD-
optimal forecast is 0

– In both cases, the expectation and 

MSE-optimal forecast is 0.4

– Pois and NB differ heavily in the tails:
�Pois � > 3 = 0.00078

�NB � > 3 = 0.026
�NB � > 3

�Pois � > 3 = 34.1

Part 2: Predict full 

predictive densities –

how to assess?
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How to apply this to grouped data, 

e.g. multiple time series?

� Two possible summaries:

– Simply “stack” all p values and test this big vector for uniformity

– Test each series’ p values for uniformity, yielding a test statistic WT for each series – plot, summarize, 
compare these

� Illustration: two datasets with daily sales from European retailers

– 1000 series each

– Forecast horizon up to 100 days for each series

� Try multiple forecasting approaches – here, look at three:

– Empirical + Weekday

o Density forecast for next Friday is just the historically observed distribution of Friday sales

– Poisson Regression

– NegBin Regression

o Regressions include day of week, price, trend and Christmas

Part 2: Predict full 

predictive densities –

how to assess?
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Results

Retailer A Retailer B

� Poisson Regression obviously bad – does not capture overdispersion

� Empirical + Weekdays comparable to NegBin Regression

� The probability for high sales is always underforecast

Part 2: Predict full 

predictive densities –

how to assess?

rPIT p 
values

WT test 
statistics 

from 
data-
driven 

smooth 
tests for 

uniformity
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Conclusion

� Do not rely on the MAE et al. to find an unbiased point forecast

– If you do need to report MAE/MAPE/wMAPE/MASE, also report bias

– For point predictions, use MSE, or RMSE, or a scaled RMSE that is comparable between scales

� Better: forecast and assess full predictive densities, as we did here

– Alternative to the rPIT: proper scoring rules (see the paper)

– Possibly assess misspecified dynamics/correlations

o E.g., AR(7) error structure by comparing against Markov Chain alternatives

o This is hard for low counts (low power!)

� Finally: assess the consequences of your forecast

– “Cost of Forecast Error”

– “Forecast Value Added”

– These will usually include both interval forecasts/predictive distributions and subsequent processes, like 
logistical optimization for replenishment
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Thank you!
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