Master in Life Sciences

A cooperation between BFH, FHNW, HES-SO, ZFH

Module	Deep Learning	
Code		
Degree Programme	Master of Science in Life Sciences (MSLS)	
ECTS Credits	3 ECTS	
Workload	2 h lectures a week, 1 h exercises a week 60 h: 28 h contact lessons; 14 h guided exercises; 18 h self-study	
Module Coordinator	Name Phone Email Address	Dr. Martin Schüle +41 (0)58 934 57 84 martin.schuele@zhaw.ch ZHAW Zürcher Hochschule für Angewandte Wissenschaften
		Life Sciences and Facility Management Schloss 1 CH-8820 Wädenswil
Lecturers	Dr. Martin Schüle	
Entry Requirements	 The course "Introduction to Neural Networks" or equivalent. The course requires a solid background in mathematics, as usually taught at the Bachelor's level, especially in: statistics probability theory basic linear algebra The module and associated practical exercises will be taught using Python and Tensorflow. Familiarity with basic programming in Python is required. 	
Learning Outcomes and Competences	 The objective of the module is to provide the students with a working knowledge of current artificial neural network (ANN) and deep learning (DL) techniques and apply them to problems in the field of life sciences. After completing the module, students will be able to: judge on the advantages and disadvantages of different ANN and DL architectures and corresponding applications adapt and apply suitable ANN and DL techniques to problems in life sciences learn about new methods in the field on their own reflect the usage of ANN and DL in a life sciences context 	

	-		
Module Content	The module covers the following topics:		
	 judge on the advantages and disadvantages of different ANN and DL architectures and corresponding applications adapt and apply suitable ANN and DL techniques to problems in life sciences 		
	 learn about new methods in the field on their own 		
	reflect the usage of ANN and DL in a life sciences context		
	 Basics of ANN: Perceptron, Multilayer Perceptron, backpropagation Basics of DL: Introduction to Tensorflow, optimizers, regularization methods Specific DL models: Autoencoder, CNN, RNN, LSTM, attention models Case studies in life sciences 		
Teaching / Learning Methods	 Lectures ~30% Guided exercises ~20% Self-study ~50% 		
Assessment of Learning Outcome	 Project work during the semester (40%) Final exam (written) (60%) 		
Bibliography	Lecture notes will be provided. Important additional literature will be provided on Moodle.		
Language	English		
Comments	The module is coordinated with the module "Machine Learning and Pattern Recognition", "Introduction to Neural Networks", and the module "Advanced Deep Learning".		
Last Update			