

Module Software Engineering and Design Patterns

Code

Degree Program Master of Science in Life Sciences (MSLS)

ECTS Credits 3

Workload 90h: 30h Lecture (2 Lessons/W), 15h Exercise (1 Lessons/W), 45h
Self-study/project (2 Lessons/W)

Module
Coordinators

Dr. Ahmad Aghaebrahimian
Email agha@zhaw.ch
Address ZHAW, LSFM, Schloss 1, 8820 Wädenswil

Lecturers Ahmad Aghaebrahimian

Entry
Requirements

● Required: Programming, Data Structures, and Algorithms
module or equivalent

● Any Machine Learning, Neural Network, or Deep learning
module is a nice-to-have background, although none is
mandatory.

Learning
Outcomes and
Competences

● Proficiency in software engineering principles including software
development life cycle models, planning, and requirements
engineering.

● Understanding Object-Oriented Analysis and Design (OOAD)
and some of its principles such as system design using UML,
encapsulation, and inheritance

● Basic knowledge of design patterns including creational,
structural, and behavioral.

● Understanding various software architectural designs (e.g.,
layered architecture, monolithic, microservices).

● Basic understanding of GUI and web applications

Module Content The course encompasses four chapters in software engineering,
including basic principles of software development (requirement
engineering, development models, testing), system design (OO design),
design patterns (patterns and architecture), and best practices (machine
learning as software, web applications, cloud computing).

In the first chapter, students acquire a basic understanding of software
development life cycles, and models including Waterfall, Spiral, Agile,
and Scrum methodologies. A more comprehensive introduction to Agile
and Scrume methodology will be presented. Meanwhile, they will define
a mini-project on which they incrementally apply their learning in each

session, and present it in the last session. They will then study system
requirement analysis by analyzing functional and non-functional
requirements.

In the second chapter, before designing a system in UML, they will be
introduced to the basics of object-oriented designs, reviewing
abstraction, classes, objects, attributes, methods, Inheritance, and
encapsulation.

In the third chapter, students will be introduced to common design
patterns, their importance, and their function in designing modular and
scalable software solutions. They will study creational, structural, and
behavioral patterns. They will be also introduced to several system
design decisions such as monolithic, SOA, Microservice, and Serverless,
and evaluate their consistency, availability, and tolerance. Every
architecture will exemplified by describing a prominent real-life example.
This chapter concludes with a description of the layered software
architecture (Persistence, Business, Presentation).

The fourth chapter introduces several basic practices such as Graphic
User Interface, web application design, test-driven development, system
maintainability, and machine learning as software.

Each session consists of a high-level presentation of all concepts and
one core concept which shall be presented in detail with hands-on
exercises.

Teaching /
Learning Methods

The sessions are in the form of flipped classrooms, meaning the students
are required to study the material of each session before the lectures.
The lecturer then covers the basics of the material, making sure the
general concepts are grasped and initiating the discussion about all
elements associated with the architectural and design characteristics of
large software systems.
When applicable, he ground the content to popular software products
such as Stackoerflow, Netflix, Google search engine, etc.
In each session, students incorporate what they learned into their own
continuously maturing software project. At the end of the semester, they
are expected to present their system to other students.

Assessment of
Learning Outcome

Written exam 50% (if more than 10 students, otherwise oral)
Project 50%

Bibliography Selected parts (as listed in the syllabus below for each session) of the

following resources will be used as study material. All resources are in

the open domain.

 A: Python 3 Patterns, Recipes, and Idioms (mirror)

 B: Handbook of Software Engineering Methods

C: Think Python, 2nd edition

D: Slides (will be provided)

Language English

https://python-3-patterns-idioms-test.readthedocs.io/en/latest/index.html
https://readthedocs.org/projects/python-3-patterns-idioms-test/downloads/pdf/latest/
https://open.oregonstate.education/setextbook/
https://greenteapress.com/thinkpython2/thinkpython2.pdf

