Tele-Assessment: Leveraging Deep Learning to Assess Upper Limb Kinematics after Stroke with Off-the-shelf Webcams
Description
We are developing and validating a camera-based compensation classifier ("3C") for tele-neurorehabilitation to distinguish normal arm movements from those with compensation. The algorithm can be used with a webcam alone or in combination with an inertial measurement unit (IMU). This method improves tele-rehabilitation and increases the recovery process of clients.
Key Data
Projectlead
Andreas Luft, Prof. Dr. Martina Spiess
Deputy Projectlead
Prof. Dr. Verena Klamroth-Marganska
Project team
Dr. Elena Gavagnin, Benjamin Kühnis, Lena Sauerzopf, Josef Schönhammer, Tim Unger, Prof. Dr. Alexandre de Spindler
Project partners
Universitätsspital Zürich
Project status
completed, 10/2021 - 06/2024
Funding partner
Kanton Zürich / Digitalisierungsinitiative DIZH (Innovationsprogramm)
Further documents and links
Publications
-
Quantifying upper limb movement quality after stroke with a webcam
2024 Unger, Tim; Weikert, Thomas; Mokni, Marwen; Luft, Andreas; Gassert, Roger; Lambercy, Olivier; Sauerzopf, Lena; Gavagnin, Elena; Kühnis, Benjamin; Spiess, Martina; Schönhammer, Josef; Awai Easthope, Chris
-
Upper limb movement quality measures : comparing IMUs and optical motion capture in stroke patients performing a drinking task
2024 Unger, T.; de Sousa Ribeiro, R.; Mokni, M.; Weikert, T.; Pohl, J.; Schwarz, A.; Held, J.P.O.; Sauerzopf, L.; Kühnis, B.; Gavagnin, E.; Luft, A.R.; Gassert, R.; Lambercy, O.; Awai Easthope, C.; Schönhammer, J.G.
-
Implementation of tools for technology-based teleassessment of sensorimotor recovery after stroke
2022 Sauerzopf, Lena; Luft, Andreas; Spiess, Martina
-
Promoting telerehabilitation after stroke : applications of assessments and intervention in occupational therapy
2022 Sauerzopf, Lena