Delete search term

Header

Main navigation

Stroke DynamiX

Graphical and Causal Networks for Personalized Stroke Management

Description

Stroke DynamiX explores data-driven stroke management using machine-learning techniques in a consortium of statistics researchers, translational enablers, and clinical partners. We implement statistical tools to dynamically model stroke epidemiologically and predict real-time sepsis onset in the clinic.

Key Data

Projectlead

Deputy Projectlead

Co-Projectlead

Prof. Dr. Reinhard Furrer (Universität Zürich), Dr. Zsolt Kulcsar (Universitätsspital Zürich)

Project team

Dr. Jan Bartussek (Universitätsspital Zürich), Matteo Delucchi, Dr. Norman Juchler

Project partners

Universität Zürich; Universitätsspital Zürich; Hôpitaux universitaires de Genève

Project status

ongoing, started 05/2023

Institute/Centre

Institute of Computational Life Sciences (ICLS)

Funding partner

Digitalisierungsinitiative der Zürcher Hochschulen DIZH

Project budget

599'866 CHF