Machine learning for NMR spectroscopy
Prediction of the spin system of small molecules from high-resolution liquid NMR spectra with the use of machine learning
Description
The goal of this project is to make NMR spectroscopy available to a wider range of applications and to non-experts by the automation of data reduction and analysis steps, in particular by combining deep learning methods for the extraction and a Bayesian approach for the integration and refinement of information.
Key Data
Projectlead
Deputy Projectlead
Project team
Dr. Simon Bruderer, Dr. Flavio De Lorenzi, Dr. Michael Fey, Giulia Fischetti, Prof. Dr. Rudolf Marcel Füchslin, Dominik Graf, Dr. Björn Heitmann, Benjamin Heuberger, Dr. Leila Mohammadzadeh, Dr. Federico Paruzzo, Nicolas Schmid, Dr. Giuseppe Toscano, Dr. Simone Ulzega, Dr. Thomas Oskar Weinmann
Project partners
Bruker Switzerland AG
Project status
completed, 11/2020 - 07/2023
Funding partner
Innovationsprojekt / Projekt Nr. 44786.1 IP-ENG
Project budget
571'499 CHF
Publications
-
Automated spin system analysis in NMR spectroscopy with SpinDETR : a deep learning approach
2024 Schmid, Nicolas; Wanner, Marc; Fischetti, Giulia; Meshkian, Mohsen; Bruderer, Simon; Henrici, Andreas; Wegner, Jan Dirk; Sigel, Roland K.O.; Heitmann, Björn; Wilhelm, Dirk
-
Automated spin system analysis in NMR spectroscopy with SpinDETR : a deep learning approach
2024 Schmid, Nicolas; Wanner, Marc; Fischetti, Giulia; Meshkian, Mohsen; Bruderer, Simon; Henrici, Andreas; Wegner, Jan Dirk; Sigel, Roland K. O.; Heitmann, Bjoern; Wilhelm, Dirk
-
MuSe Net: a deep learning framework for trustworthy multiplet segmentation in 1D 1H NMR spectra
2024 Fischetti, Giulia; Schmid, Nicolas; Bruderer, Simon; Henrici, Andreas; Heitmann, Björn; Scarso, Alessandro; Caldarelli, Guido; Wilhelm, Dirk
-
MuSe Net : a deep learning framework for trustworthy multiplet segmentation in 1D 1H NMR spectra
2024 Fischetti, Giulia; Schmid, Nicolas; Bruderer, Simon; Henrici, Andreas; Heitmann, Bjoern; Scarso, Alessandro; Caldarelli, Guido; Wilhelm, Dirk
-
Bayesian analysis of 1D 1H-NMR spectra
2024 De Lorenzi, Flavio; Weinmann, Tom; Bruderer, Simon; Heitmann, Björn; Henrici, Andreas; Stingelin, Simon
-
Transforming NMR spectroscopy : extraction of multiplet parameters with deep learning
2023 Schmid, Nicolas; Fischetti, Giulia; Henrici, Andreas; Wilhelm, Dirk; Wanner, Marc; Meshkian, Mohsen; Bruderer, Simon; Wegner, Jan-Dirk; Sigel, Roland K. O.; Heitmann, Bjoern; Konukoglu, Ender
-
Deconvolution of NMR spectra : a deep learning-based approach
2023 Schmid, Nicolas; Bruderer, Simon; Fischetti, Giulia; Paruzzo, Federico; Toscano, Giuseppe; Graf, Dominik; Fey, Michael; Ziebart, Volker; Henrici, Andreas; Grabner, Helmut; Wegner, Jan Dirk; Sigel, Roland K.O.; Heitmann, Björn; Wilhelm, Dirk
-
Deconvolution of 1D NMR spectra : a deep learning-based approach
2023 Schmid, N.; Bruderer, S.; Paruzzo, F.; Fischetti, G.; Toscano, G.; Graf, D.; Fey, M.; Henrici, A.; Ziebart, V.; Heitmann, B.; Grabner, H.; Wegner, J.D.; Sigel, R.K.O.; Wilhelm, D.
-
Uncertainty quantification for reliable automatic multiplet classification in 1H NMR spectra
2023 Fischetti, Giulia; Schmid, Nicolas; Henrici, Andreas; Wilhelm, Dirk; Bruderer, Simon; Heitmann, Bjoern; Scarso, Alessandro; Caldarelli, Guido
-
Automatic classification of signal regions in 1H nuclear magnetic resonance spectra
2023 Fischetti, Giulia; Schmid, Nicolas; Bruderer, Simon; Caldarelli, Guido; Scarso, Alessandro; Henrici, Andreas; Wilhelm, Dirk
-
Deconvolution of NMR spectra : a deep learning-based approach
2022 Schmid, Nicolas; Bruderer, Simon; Fischetti, Giulia; Paruzzo, Federico; Toscano, Giuseppe; Graf, Dominik; Fey, Michael; Henrici, Andreas; Grabner, Helmut; Wegner, Jan Dirk; Sigel, Roland K. O.; Heitmann, Björn; Wilhelm, Dirk
-
A deep ensemble learning method for automatic classification of multiplets in 1D NMR spectra
2022 Fischetti, Giulia; Schmid, Nicolas; Bruderer, Simon; Paruzzo, Federico; Toscano, Giuseppe; Graf, Dominik; Fey, Michael; Henrici, Andreas; Scarso, Alessandro; Caldarelli, Guido; Heitmann, Björn; Wilhelm, Dirk