Prof. Thilo Stadelmann , Dr. rer. nat.
Prof. Thilo Stadelmann , Dr. rer. nat.
ZHAW
School of Engineering
Centre for Artificial Intelligence
Technikumstrasse 71
8400 Winterthur
Work at ZHAW
Position
- Professor of artificial intelligence and machine learning (chair of Engineering - Information)
- Director of Centre, Centre for Artificial Intelligence
- Head of Machine, Perception & Cognition Group
- Scientist
- Principal investigator
- Keynote speaker
- Lecturer, consultant, networker, mentor, leader, father, believer
Focus
- Artificial intelligence and machine learning: deep learning, pattern recognition, computer vision, audio analysis, intelligent sysetems
- Research interests: Robust and practical deep learning, industrial computer vision, medical imaging, more general AI, trustworthy AI, learning to learn, document recognition, voice recognition, data science
- Data Science
Teaching
- Lecturer in the bachelor programmes computer science and data science, in continuing education, and on the master and PhD level
- Guest lecturer at several universities nationally and internationally
- BSc module Artificial Intelligence 1&2
- MSc module Machine Learning
- Supervisor of student theses BSc/MSc/continuing education
- PhD supervisor
Professional development teaching
Experience
- Founder, member of the board
AlpineAI AG
07 / 2023 - today - Keynote speaker
Premium Speakers Agency
05 / 2023 - today - Professor of AI/ML, director of ZHAW CAI, head of MPC Group
ZHAW School of Engineering
04 / 2021 - today - Co-founder and member of the board
ZHAW Datalab
05 / 2013 - today - Member of the Board
Data innovation alliance
01 / 2016 - 11 / 2023 - Scientific director
ZHAW digital
01 / 2019 - 03 / 2021 - Professor of computer science
ZHAW Institute of Applied Information Technology
07 / 2018 - 03 / 2021 - Deputy head of research area information engineering
ZHAW Institute of applied Information Technology
06 / 2015 - 03 / 2021 - Head
ZHAW Datalab
05 / 2013 - 12 / 2018 - Vice president
Swiss Group of Artificial Intelligence and Cognitive Science (SGAICO)
02 / 2014 - 09 / 2018 - Senior lecturer for information engineering
ZHAW Institute of applied Information Technology
02 / 2013 - 06 / 2018 - Managing director ad interim
Swiss Alliance for Data-Intensive Services
08 / 2017 - 02 / 2018 - Co-organizer
Zurich Machine Learning & Data Science Meetup
09 / 2015 - 03 / 2017 - Head of smart software
TWT GmbH Science & Innovation
04 / 2011 - 06 / 2013 - Director of internal IT
TWT GmbH Science & Innovation
04 / 2012 - 01 / 2013 - Software architect and project leader
TWT GmbH Science & Innovation
07 / 2010 - 03 / 2011 - Research assistant in the area of audio- and video mining
Philipps-University of Marburg
09 / 2004 - 06 / 2010 - Several sideline jobs in software development and data mining
diverse
02 / 1998 - 06 / 2010
Education and Continuing education
Education
- Dr. rer. nat. (equivalent PhD) / computer science
Philipps-University Marburg
08 / 2004 - 07 / 2010 - Dipl. Inform. (FH) (equivalent MSc) / Computer science with focus technical/scientific applications
Giessen-Friedberg University of Applied Sciences
09 / 2000 - 07 / 2004
Continuing Education
- Management education ZHAW
Zurich University of Applied Sciences
06 / 2018 - CAS Higher education didactics
Zurich University of Teacher Education
06 / 2015
Network
Membership of networks
- Confederation of Laboratories for Artificial Intelligence Research in Europe (CLAIRE)
- European Centre for Living Technology (ECLT) (fellow)
- IEEE CS, CIS, SMC (senior member)
- International Association for Pattern Recognition (IAPR) (member of TC3)
- German Association for Pattern Recognition (DAGM)
- Gesellschaft für Klassifikation - Data Science Society (GfKl)
- Data innovation alliance (d+i) (Co-Founder)
- Premium Speakers Agency
- ZHAW Datalab (member of the board)
- ZHAW staff prayer meeting
ORCID digital identifier
Awards
- Finalist - "The Pascal"
Digital Economy Award
09 / 2024 - Honorable Mention - Best Paper Award
IEEE Swiss Conference on Data Science 2024
06 / 2024 - Supervisor of several award-winning student theses (u.a. ZHAW SGD Award, Siemens Excellence Award, Lab Sciences Award, Dr. Waldemar Jucker Award)
various
01 / 2024 - Most Cited Paper Award for "Automated Machine Learning in Practice"
IEEE SDS 2023
06 / 2023 - Impact Award 2022
ZHAW digital
12 / 2022 - DIZH Fellowship 2022
ZHAW digital
11 / 2022 - Swiss Data Science Conference Best Paper Award 2021
SDS 2021
06 / 2021 - Swiss Data Science Conference Best Poster Presentation Award 2020
SDS 2020
06 / 2020 - Teaching award "Best Teaching - Best Practices"
ZHAW
09 / 2019
Social media
Media presence
- Frequent media coverage, e.g., as interviewee
- What power has AI? (Keynote at KCF'2023)
- Suddenly useful: ChatGPT heralds tech revolution (Finanzen und Wirtschaft)
- How dangerous will AI be for us? Three horror scenarios in the fact check (20 Minuten)
- ChatGPT all-rounder: how self-determined is artificial intelligence? (SwissLife Select Blog)
- Artificial intelligence: here comes the 'Cambrian explosion' (NZZ am Sonntag)
- Human 2.0 (Fenster zum Sonntag)
Projects
- Smart urban green spaces / Team member / laufend
- AI for REAL-world NETwork operation / Team member / laufend
- Stability of self-organizing net fragments as inductive bias for next-generation deep learning / Project leader / laufend
- Machine Learning for Body Composition Analysis / Project leader / laufend
- certAInty – A Certification Scheme for AI systems / Team member / laufend
- LINA: Shared Large-scale Infrastructure for the Development and Safe Testing of Autonomous Systems / Project leader / laufend
- AC3T – AI powered CBCT for improved Combination Cancer Therapy / Team member / laufend
- Accessible Scientific PDFs for All / Co-project leader / laufend
- European Conference Series on Artificial Intelligence in Industry and Finance / Team member / laufend
- Deep Dive ML on Simulated Enzyme-Electrolysis Performance / Project leader / abgeschlossen
- Enabling Scientific Diplomacy: Preparation of the GESDA Neurotechnology Compass / Deputy project leader / abgeschlossen
- Master3D – 3D-Master for a Digitized Manufacturing Platform / Deputy project leader / abgeschlossen
- DISTRAL: Industrial Process Monitoring for Injection Molding with Distributed Transfer Learning / Project leader / abgeschlossen
- Mobile Inclusion Lab / Co-project leader / abgeschlossen
- AUTODIDACT – Automated Video Data Annotation to Empower the ICU Cockpit Platform for Clinical Decision Support / Co-project leader / abgeschlossen
- TAILOR – Trustworthy and sample efficient vision transformers / Co-project leader / abgeschlossen
- Pilot study machine learning for injection molding processes / Project leader / abgeschlossen
- DIR3CT: Deep Image Reconstruction through X-Ray Projection-based 3D Learning of Computed Tomography Volumes / Team member / abgeschlossen
- TAILOR – Foundations of Trustworthy AI - Integrating Reasoning, Learning and Optimization / Project leader / abgeschlossen
- RealScore – Scanning of Real-World Sheet Music for a Digital Music Stand / Co-project leader / abgeschlossen
- FWA: Visual Food Waste Analysis for Sustainable Kitchens / Co-project leader / abgeschlossen
- Feasibility Study Reinforcement Learning for Heating Systems / Team member / abgeschlossen
- FarmAI – Artificial intelligence for Farming Simulator / Team member / abgeschlossen
- Libra: A One-Tool Solution for MLD4 Compliance / Team member / abgeschlossen
- Deep-Learning-basierter Spracherkenner mit beschränkten Trainingsdaten (DeLLA) / Team member / abgeschlossen
- DeepText: Intelligent Text Analysis with Deep Learning / Team member / abgeschlossen
- DeepScore: Digital Music Stand with Musical Understanding via Active Sheet Technology / Project leader / abgeschlossen
- Complexity 4.0 / Deputy project leader / abgeschlossen
- Automated Article Segmentation of Newspaper Pages for "Real Time Print Media Monitoring" (PANOPTES) / Team member / abgeschlossen
- MobileMall / Project leader / abgeschlossen
- SODES – Swiss Open Data Exploration System / Team member / abgeschlossen
- Talkalyzer / Team member / abgeschlossen
Publications
-
Ali, Waqar; Vascon, Sebastiano; Stadelmann, Thilo; Pelillo, Marcello,
2024.
Hierarchical glocal attention pooling for graph classification.
Pattern Recognition Letters.
186, pp. 71-77.
Available from: https://doi.org/10.1016/j.patrec.2024.09.009
-
Jermain, Peter R; Oswald, Martin; Langdun, Tenzin; Wright, Santana; Khan, Ashraf; Stadelmann, Thilo; Abdulkadir, Ahmed; Yaroslavsky, Anna N.,
2024.
Deep learning-based cell segmentation for rapid optical cytopathology of thyroid cancer.
Scientific Reports.
14(1), pp. 16389.
Available from: https://doi.org/10.1038/s41598-024-64855-2
-
Dashti, Ali; Stadelmann, Thilo; Kohl, Thomas,
2024.
Machine learning for robust structural uncertainty quantification in fractured reservoirs.
Geothermics.
120(103012).
Available from: https://doi.org/10.1016/j.geothermics.2024.103012
-
Schmitt-Koopmann, Felix; Huang, Elaine M.; Hutter, Hans-Peter; Stadelmann, Thilo; Darvishy, Alireza,
2024.
MathNet : a data-centric approach for printed mathematical expression recognition.
IEEE Access.
12, pp. 76963-76974.
Available from: https://doi.org/10.1109/ACCESS.2024.3404834
-
Neururer, Daniel; Dellwo, Volker; Stadelmann, Thilo,
2024.
Pattern Recognition Letters.
181, pp. 64-69.
Available from: https://doi.org/10.1016/j.patrec.2024.03.016
-
Yan, Peng; Abdulkadir, Ahmed; Luley, Paul-Philipp; Rosenthal, Matthias; Schatte, Gerrit A.; Grewe, Benjamin F.; Stadelmann, Thilo,
2024.
IEEE Access.
12, pp. 3768-3789.
Available from: https://doi.org/10.1109/ACCESS.2023.3349132
-
Tuggener, Lukas; Emberger, Raphael; Ghosh, Adhiraj; Sager, Pascal; Satyawan, Yvan Putra; Montoya, Javier; Goldschagg, Simon; Seibold, Florian; Gut, Urs; Ackermann, Philipp; Schmidhuber, Jürgen; Stadelmann, Thilo,
2024.
Real world music object recognition.
Transactions of the International Society for Music Information Retrieval.
7(1), pp. 1-14.
Available from: https://doi.org/10.5334/tismir.157
-
Segessenmann, Jan; Stadelmann, Thilo; Davison, Andrew; Dürr, Oliver,
2023.
Assessing deep learning : a work program for the humanities in the age of artificial intelligence.
AI and Ethics.
Available from: https://doi.org/10.1007/s43681-023-00408-z
-
Amirian, Mohammadreza; Montoya-Zegarra, Javier A.; Herzig, Ivo; Eggenberger Hotz, Peter; Lichtensteiger, Lukas; Morf, Marco; Züst, Alexander; Paysan, Pascal; Peterlik, Igor; Scheib, Stefan; Füchslin, Rudolf Marcel; Stadelmann, Thilo; Schilling, Frank-Peter,
2023.
Medical Physics.
50(10), pp. 6228-6242.
Available from: https://doi.org/10.1002/mp.16405
-
Battaglia, Mattia; Comi, Ennio; Stadelmann, Thilo; Hiestand, Roman; Ruhstaller, Beat; Knapp, Evelyne,
2023.
Deep ensemble inverse model for image-based estimation of solar cell parameters.
APL Machine Learning.
1(3), pp. 036108.
Available from: https://doi.org/10.1063/5.0139707
-
Sager, Pascal; Salzmann, Sebastian; Burn, Felice; Stadelmann, Thilo,
2022.
Journal of Imaging.
8(8), pp. 222.
Available from: https://doi.org/10.3390/jimaging8080222
-
Schilling, Frank-Peter; Flumini, Dandolo; Füchslin, Rudolf Marcel; Gavagnin, Elena; Geller, Armando; Quarteroni, Silvia; Stadelmann, Thilo,
2022.
Archives of Data Science, Series A.
8(2).
Available from: https://doi.org/10.5445/IR/1000146422
-
Stadelmann, Thilo; Klamt, Tino; Merkt, Philipp H.,
2022.
Data centrism and the core of Data Science as a scientific discipline.
Archives of Data Science, Series A.
8(2).
Available from: https://doi.org/10.5445/IR/1000143637
-
Schmitt-Koopmann, Felix M.; Huang, Elaine M.; Hutter, Hans-Peter; Stadelmann, Thilo; Darvishy, Alireza,
2022.
FormulaNet : a benchmark dataset for mathematical formula detection.
IEEE Access.
10, pp. 91588-91596.
Available from: https://doi.org/10.1109/ACCESS.2022.3202639
-
Tuggener, Lukas; Schmidhuber, Jürgen; Stadelmann, Thilo,
2022.
Is it enough to optimize CNN architectures on ImageNet?.
Frontiers in Computer Science.
4(1041703).
Available from: https://doi.org/10.3389/fcomp.2022.1041703
-
Wehrli, Samuel; Hertweck, Corinna; Amirian, Mohammadreza; Glüge, Stefan; Stadelmann, Thilo,
2021.
Bias, awareness, and ignorance in deep-learning-based face recognition.
AI and Ethics.
2(3), pp. 509-522.
Available from: https://doi.org/10.1007/s43681-021-00108-6
-
Stadelmann, Thilo; Keuzenkamp, Julian; Grabner, Helmut; Würsch, Christoph,
2021.
The AI-Atlas : didactics for teaching AI and machine learning on-site, online, and hybrid.
Education Sciences.
11(7), pp. 318.
Available from: https://doi.org/10.3390/educsci11070318
-
Tuggener, Lukas; Amirian, Mohammadreza; Benites de Azevedo e Souza, Fernando; von Däniken, Pius; Gupta, Prakhar; Schilling, Frank-Peter; Stadelmann, Thilo,
2020.
Design patterns for resource-constrained automated deep-learning methods.
AI.
1(4), pp. 510-538.
Available from: https://doi.org/10.3390/ai1040031
-
Dessimoz, Jean-Daniel; Koehler, Jana; Stadelmann, Thilo,
2015.
AI Magazine.
36(2), pp. 102-105.
Available from: https://doi.org/10.1609/aimag.v36i2.2591
-
Stockinger, Kurt; Stadelmann, Thilo,
2014.
Data Science für Lehre, Forschung und Praxis.
HMD Praxis der Wirtschaftsinformatik.
51(4), pp. 469-479.
Available from: https://doi.org/10.1365/s40702-014-0040-1
-
Stadelmann, Thilo; Schilling, Frank-Peter, eds.,
2022.
Advances in deep neural networks for visual pattern recognition.
Basel:
MDPI.
Journal of Imaging ; 8.
Available from: https://www.mdpi.com/journal/jimaging/special_issues/deep_neural_network
-
Schilling, Frank-Peter; Stadelmann, Thilo, eds.,
2020.
Artificial neural networks in pattern recognition.
Basel:
MDPI.
Computers ; 9.
Available from: https://www.mdpi.com/journal/computers/special_issues/ANNPR2020
-
Braschler, Martin; Stadelmann, Thilo; Stockinger, Kurt, eds.,
2019.
Applied data science : lessons learned for the data-driven business.
1. Auflage.
Cham:
Springer.
ISBN 978-3-030-11820-4.
Available from: https://doi.org/10.1007/978-3-030-11821-1
-
Stadelmann, Thilo,
2024.
Wegweiser Künstliche Intelligenz : verstehen, anwenden und zuversichtlich Zukunft gestalten
.
In:
Hersberger, Sebastian; Hoffmann, Christian Hugo, eds.,
Wie die Künstliche Intelligenz die Wirtschaft verändert : Überblick über die theoretischen Grundlagen und Praxisbeispiele entlang von Ökosystemen.
Cham:
Springer.
-
Stadelmann, Thilo,
2019.
Wie maschinelles Lernen den Markt verändert
.
In:
Haupt, Reinhard; Schmitz, Stephan, eds.,
Digitalisierung: Datenhype mit Werteverlust? : ethische Perspektiven für eine Schlüsseltechnologie.
Holzgerlingen:
SCM Hänssler.
pp. 67-79.
Available from: https://doi.org/10.21256/zhaw-18822
-
Stadelmann, Thilo; Tolkachev, Vasily; Sick, Beate; Stampfli, Jan; Dürr, Oliver,
2019.
Beyond ImageNet : deep learning in industrial practice
.
In:
Braschler, Martin; Stadelmann, Thilo; Stockinger, Kurt, eds.,
Applied data science : lessons learned for the data-driven business.
Cham:
Springer.
pp. 205-232.
Available from: https://doi.org/10.1007/978-3-030-11821-1_12
-
Braschler, Martin; Stadelmann, Thilo; Stockinger, Kurt,
2019.
.
In:
Braschler, Martin; Stadelmann, Thilo; Stockinger, Kurt, eds.,
Applied data science : lessons learned for the data-driven business.
Cham:
Springer.
pp. 17-29.
Available from: https://doi.org/10.1007/978-3-030-11821-1_2
-
Stadelmann, Thilo; Stockinger, Kurt; Heinatz-Bürki, Gundula; Braschler, Martin,
2019.
.
In:
Braschler, Martin; Stadelmann, Thilo; Stockinger, Kurt, eds.,
Applied data science : lessons learned for the data-driven business.
Cham:
Springer.
pp. 31-45.
Available from: https://doi.org/10.1007/978-3-030-11821-1_3
-
Stadelmann, Thilo; Braschler, Martin; Stockinger, Kurt,
2019.
Introduction to applied data science
.
In:
Braschler, Martin; Stadelmann, Thilo; Stockinger, Kurt, eds.,
Applied data science : lessons learned for the data-driven business.
Cham:
Springer.
pp. 3-16.
Available from: https://doi.org/10.1007/978-3-030-11821-1_1
-
Stockinger, Kurt; Braschler, Martin; Stadelmann, Thilo,
2019.
Lessons learned from challenging data science case studies
.
In:
Braschler, Martin; Stadelmann, Thilo; Stockinger, Kurt, eds.,
Applied data science : lessons learned for the data-driven business.
Cham:
Springer.
pp. 447-465.
Available from: https://doi.org/10.1007/978-3-030-11821-1_24
-
Meierhofer, Jürg; Stadelmann, Thilo; Cieliebak, Mark,
2019.
.
In:
Braschler, Martin; Stadelmann, Thilo; Stockinger, Kurt, eds.,
Applied data science : lessons learned for the data-driven business.
Cham:
Springer.
pp. 47-61.
Available from: https://doi.org/10.1007/978-3-030-11821-1_4
-
Hollenstein, Lukas; Lichtensteiger, Lukas; Stadelmann, Thilo; Amirian, Mohammadreza; Budde, Lukas; Meierhofer, Jürg; Füchslin, Rudolf Marcel; Friedli, Thomas,
2019.
Unsupervised learning and simulation for complexity management in business operations
.
In:
Braschler, Martin; Stadelmann, Thilo; Stockinger, Kurt, eds.,
Applied data science : lessons learned for the data-driven business.
Cham:
Springer.
pp. 313-331.
Available from: https://doi.org/10.1007/978-3-030-11821-1_17
-
Stockinger, Kurt; Stadelmann, Thilo; Ruckstuhl, Andreas,
2016.
.
In:
Fasel, Daniel; Andreas, Meier, eds.,
Big Data.
Wiesbaden:
Springer.
pp. 59-81.
Edition HMD.
Available from: https://doi.org/10.1007/978-3-658-11589-0_4
-
Bolt, Peter; Ziebart, Volker; Jaeger, Christian; Schmid, Nicolas; Stadelmann, Thilo; Füchslin, Rudolf Marcel,
2024.
A simulation study on energy optimization in building control with reinforcement learning [paper].
In:
11th IAPR TC 3 Workshop on Artificial Neural Networks for Pattern Recognition (ANNPR'24), Montreal, Canada, 10-12 October 2024.
ZHAW Zürcher Hochschule für Angewandte Wissenschaften.
Available from: https://doi.org/10.21256/zhaw-31129
-
Yan, Peng; Abdulkadir, Ahmed; Aguzzi, Giulia; Schatte, Gerrit A.; Grewe, Benjamin F.; Stadelmann, Thilo,
2024.
In:
2024 11th IEEE Swiss Conference on Data Science (SDS).
11th IEEE Swiss Conference on Data Science (SDS), Zurich, Switzerland, 30-31 May 2024.
IEEE.
pp. 138-145.
Available from: https://doi.org/10.1109/SDS60720.2024.00027
-
Meyer, Benjamin; Stadelmann, Thilo; Lüthi, Marcel,
2024.
ScalaGrad : a statically typed automatic differentiation library for safer data science [paper].
In:
2024 11th IEEE Swiss Conference on Data Science (SDS).
11th IEEE Swiss Conference on Data Science (SDS), Zurich, Switzerland, 30-31 May 2024.
IEEE.
pp. 229-232.
Available from: https://doi.org/10.1109/SDS60720.2024.00040
-
Tuggener, Lukas; Sager, Pascal; Taoudi-Benchekroun, Yassine; Grewe, Benjamin F.; Stadelmann, Thilo,
2024.
So you want your private LLM at home? : a survey and benchmark of methods for efficient GPTs [paper].
In:
2024 11th IEEE Swiss Conference on Data Science (SDS).
11th IEEE Swiss Conference on Data Science (SDS), Zurich, Switzerland, 30-31 May 2024.
IEEE.
Available from: https://doi.org/10.1109/SDS60720.2024.00036
-
Begga, Ahmed; Ali, Waqar; Niculescu, Gabriel; Escolano, Francisco; Stadelmann, Thilo; Pelillo, Marcello,
2024.
Community-hop : enhancing node classification through community preference [paper].
In:
Joint IAPR International Workshops on Statistical Techniques in Pattern Recognition and Structural and Syntactic Pattern Recognition (S+SSPR), Venice, Italy, 9-10 September 2024.
ZHAW Zürcher Hochschule für Angewandte Wissenschaften.
Available from: https://doi.org/10.21256/zhaw-31438
-
Jermain, Peter R.; Oswald, Martin; Langdun, Tenzin; Wright, Santana; Khan, Ashraf; Stadelmann, Thilo; Abdulkadir, Ahmed; Yaroslavsky, Ann N.,
2024.
Rapid optical cytology with deep learning-based cell segmentation for diagnosis of thyroid lesions [paper].
In:
Optica Biophotonics Congress: Biomedical Optics 2024 (Translational, Microscopy, OCT, OTS, BRAIN).
Optica Biophotonics Congress: Biomedical Optics, Fort Lauderdale, USA, 7-10 April 2024.
Optica Publishing Group.
pp. MTu4A.5.
Available from: https://doi.org/10.1364/MICROSCOPY.2024.MTu4A.5
-
Luley, Paul-Philipp; Deriu, Jan Milan; Yan, Peng; Schatte, Gerrit A.; Stadelmann, Thilo,
2023.
From concept to implementation : the data-centric development process for AI in industry [paper].
In:
2023 10th IEEE Swiss Conference on Data Science (SDS).
10th IEEE Swiss Conference on Data Science (SDS), Zurich, Switzerland, 22-23 June 2023.
IEEE.
pp. 73-76.
Available from: https://doi.org/10.1109/SDS57534.2023.00017
-
Emberger, Raphael; Boss, Jens Michael; Baumann, Daniel; Seric, Marko; Huo, Shufan; Tuggener, Lukas; Keller, Emanuela; Stadelmann, Thilo,
2023.
Video object detection for privacy-preserving patient monitoring in intensive care [paper].
In:
2023 10th IEEE Swiss Conference on Data Science (SDS).
10th IEEE Swiss Conference on Data Science (SDS), Zurich, Switzerland, 22-23 June 2023.
IEEE.
pp. 85-88.
Available from: https://doi.org/10.1109/SDS57534.2023.00019
-
Ali, Waqar; Vascon, Sebastiano; Stadelmann, Thilo; Pelillo, Marcello,
2023.
Quasi-CliquePool : hierarchical graph pooling for graph classification [paper].
In:
SAC '23: Proceedings of the 38th ACM/SIGAPP Symposium on Applied Computing.
2nd Graph Models for Learning and Recognition (GMLR 2023) Track at the 38th ACM/SIGAPP Symposium on Applied Computing (SAC 2023), Tallinn, Estonia, 27 March - 2 April 2023.
New York:
Association for Computing Machinery.
pp. 544-552.
Available from: https://doi.org/10.1145/3555776.3578600
-
Herzig, Ivo; Paysan, Pascal; Scheib, Stefan; Züst, Alexander; Schilling, Frank-Peter; Montoya, Javier; Amirian, Mohammadreza; Stadelmann, Thilo; Eggenberger Hotz, Peter; Füchslin, Rudolf Marcel; Lichtensteiger, Lukas,
2022.
Deep learning-based simultaneous multi-phase deformable image registration of sparse 4D-CBCT [poster].
In:
AAPM Annual Meeting, Washington, DC, USA, 10-14 July 2022.
American Association of Physicists in Medicine.
pp. e325-e326.
Available from: https://doi.org/10.1002/mp.15769
-
Amirian, Mohammadreza; Montoya, Javier; Gruss, Jonathan; Stebler, Yves D.; Bozkir, Ahmet Selman; Calandri, Marco; Schwenker, Friedhelm; Stadelmann, Thilo,
2021.
In:
Proceedings of CISP-BMEI’21.
14th International Congress on Image and Signal Processing, BioMedical Engineering and Informatics (CISP-BMEI), Shanghai, China, 23-25 October 2021.
ZHAW Zürcher Hochschule für Angewandte Wissenschaften.
Available from: https://doi.org/10.21256/zhaw-23318
-
Simmler, Niclas; Sager, Pascal; Andermatt, Philipp; Chavarriaga, Ricardo; Schilling, Frank-Peter; Rosenthal, Matthias; Stadelmann, Thilo,
2021.
In:
Proceedings of the 8th SDS.
8th Swiss Conference on Data Science, Lucerne, Switzerland, 9 June 2021.
IEEE.
pp. 26-31.
Available from: https://doi.org/10.1109/SDS51136.2021.00012
-
Knapp, Evelyne; Battaglia, Mattia; Stadelmann, Thilo; Jenatsch, Sandra; Ruhstaller, Beat,
2021.
XGBoost trained on synthetic data to extract material parameters of organic semiconductors [paper].
In:
Proceedings of the 8th SDS.
8th Swiss Conference on Data Science, Lucerne, Switzerland, 9 June 2021.
IEEE.
pp. 46-51.
Available from: https://doi.org/10.1109/SDS51136.2021.00015
-
Amirian, Mohammadreza; Tuggener, Lukas; Chavarriaga, Ricardo; Satyawan, Yvan Putra; Schilling, Frank-Peter; Schwenker, Friedhelm; Stadelmann, Thilo,
2021.
Two to trust : AutoML for safe modelling and interpretable deep learning for robustness [paper].
In:
Postproceedings of the 1st TAILOR Workshop on Trustworthy AI at ECAI 2020.
1st TAILOR Workshop on Trustworthy AI at ECAI 2020, Santiago de Compostela, Spain, 29-30 August 2020.
Springer.
Available from: https://doi.org/10.21256/zhaw-22061
-
Tuggener, Lukas; Satyawan, Yvan Putra; Pacha, Alexander; Schmidhuber, Jürgen; Stadelmann, Thilo,
2021.
The DeepScoresV2 dataset and benchmark for music object detection [paper].
In:
2020 25th International Conference on Pattern Recognition (ICPR).
25th International Conference on Pattern Recognition 2020 (ICPR’20), Online, 10-15 January 2021.
IEEE.
pp. 9188-9195.
Available from: https://doi.org/10.1109/ICPR48806.2021.9412290
-
Glüge, Stefan; Amirian, Mohammadreza; Flumini, Dandolo; Stadelmann, Thilo,
2020.
How (not) to measure bias in face recognition networks [paper].
In:
Schilling, Frank-Peter; Stadelmann, Thilo, eds.,
Artificial Neural Networks in Pattern Recognition.
9th IAPR TC 3 Workshop on Artificial Neural Networks for Pattern Recognition (ANNPR'20), Winterthur, Switzerland, 2-4 September 2020.
Cham:
Springer.
Lecture Notes in Computer Science ; 12294.
Available from: https://doi.org/10.1007/978-3-030-58309-5_10
-
Schilling, Frank-Peter; Stadelmann, Thilo, eds.,
2020.
9th IAPR TC 3 Workshop on Artificial Neural Networks for Pattern Recognition (ANNPR'20), Winterthur, Switzerland, 2-4 September 2020.
Springer.
Lecture Notes in Computer Science ; 12294.
ISBN 978-3-030-58308-8.
Available from: https://doi.org/10.1007/978-3-030-58309-5
-
Roost, Dano; Meier, Ralph; Toffetti Carughi, Giovanni; Stadelmann, Thilo,
2020.
Combining reinforcement learning with supervised deep learning for neural active scene understanding [paper].
In:
Active Vision and Perception in Human(-Robot) Collaboration Workshop at IEEE RO-MAN 2020 (AVHRC’20), online, 31 August - 4 September 2020.
University of Essex.
Available from: https://doi.org/10.21256/zhaw-20419
-
Roost, Dano; Meier, Ralph; Huschauer, Stephan; Nygren, Erik; Egli, Adrian; Weiler, Andreas; Stadelmann, Thilo,
2020.
Improving sample efficiency and multi-agent communication in RL-based train rescheduling [paper].
In:
Proceedings of the 7th SDS.
7th Swiss Conference on Data Science, Lucerne, Switzerland, 26 June 2020.
IEEE.
Available from: https://doi.org/10.21256/zhaw-19978
-
Tuggener, Lukas; Amirian, Mohammadreza; Rombach, Katharina; Lörwald, Stefan; Varlet, Anastasia; Westermann, Christian; Stadelmann, Thilo,
2019.
Automated machine learning in practice : state of the art and recent results [paper].
In:
2019 6th Swiss Conference on Data Science (SDS).
6th Swiss Conference on Data Science (SDS), Bern, 14. Juni 2019.
IEEE.
pp. 31-36.
Available from: https://doi.org/10.1109/SDS.2019.00-11
-
Elezi, Ismail; Tuggener, Lukas; Pelillo, Marcello; Stadelmann, Thilo,
2018.
DeepScores and Deep Watershed Detection : current state and open issues [paper].
In:
Proceedings of the 1st International Workshop on Reading Music Systems.
1st International Workshop on Reading Music Systems at ISMIR 2018, Paris, France, 20 September 2018.
Paris:
Society for Music Information Retrieval.
pp. 13-14.
Available from: https://doi.org/10.21256/zhaw-4777
-
Stadelmann, Thilo; Glinski-Haefeli, Sebastian; Gerber, Patrick; Dürr, Oliver,
2018.
Capturing suprasegmental features of a voice with RNNs for improved speaker clustering [paper].
In:
Artificial Neural Networks in Pattern Recognition.
8th IAPR TC3 Workshop on Artificial Neural Networks in Pattern Recognition (ANNPR), Siena, Italy, 19-21 September 2018.
Springer.
pp. 333-345.
Lecture Notes in Computer Science ; 11081.
Available from: https://doi.org/10.1007/978-3-319-99978-4_26
-
Stadelmann, Thilo; Amirian, Mohammadreza; Arabaci, Ismail; Arnold, Marek; Duivesteijn, Gilbert François; Elezi, Ismail; Geiger, Melanie; Lörwald, Stefan; Meier, Benjamin Bruno; Rombach, Katharina; Tuggener, Lukas,
2018.
Deep learning in the wild [paper].
In:
Artificial Neural Networks in Pattern Recognition.
8th IAPR TC3 Workshop on Artificial Neural Networks in Pattern Recognition (ANNPR), Siena, Italy, 19-21 September 2018.
Springer.
pp. 17-38.
Lecture Notes in Computer Science ; 11081.
Available from: https://doi.org/10.1007/978-3-319-99978-4_2
-
Tuggener, Lukas; Elezi, Ismail; Schmidhuber, Jürgen; Stadelmann, Thilo,
2018.
Deep watershed detector for music object recognition [paper].
In:
Proceedings of the 19th International Society for Music Information Retrieval Conference.
19th International Society for Music Information Retrieval Conference, Paris, 23-27 September 2018.
Paris:
Society for Music Information Retrieval.
Available from: https://doi.org/10.21256/zhaw-3760
-
Tuggener, Lukas; Elezi, Ismail; Schmidhuber, Jürgen; Pelillo, Marcello; Stadelmann, Thilo,
2018.
DeepScores : a dataset for segmentation, detection and classification of tiny objects [paper].
In:
2018 24th International Conference on Pattern Recognition (ICPR).
24th International Conference on Pattern Recognition (ICPR 2018), Beijing, China, 20-28 August 2018.
IEEE.
pp. 1-6.
Available from: https://doi.org/10.1109/ICPR.2018.8545307
-
Meier, Benjamin Bruno; Elezi, Ismail; Amirian, Mohammadreza; Dürr, Oliver; Stadelmann, Thilo,
2018.
Learning neural models for end-to-end clustering [paper].
In:
Artificial Neural Networks in Pattern Recognition.
8th IAPR TC3 Workshop on Artificial Neural Networks in Pattern Recognition (ANNPR), Siena, Italy, 19-21 September 2018.
Springer.
pp. 126-138.
Lecture Notes in Computer Science ; 11081.
Available from: https://doi.org/10.1007/978-3-319-99978-4_10
-
Hibraj, Feliks; Vascon, Sebastiano; Stadelmann, Thilo; Pelillo, Marcello,
2018.
Speaker clustering using dominant sets [paper].
In:
2018 24th International Conference on Pattern Recognition (ICPR).
24th International Conference on Pattern Recognition (ICPR 2018), Beijing, China, 20-28 August 2018.
IEEE.
pp. 3549-3554.
Available from: https://doi.org/10.1109/ICPR.2018.8546067
-
Amirian, Mohammadreza; Schwenker, Friedhelm; Stadelmann, Thilo,
2018.
Trace and detect adversarial attacks on CNNs using feature response maps [paper].
In:
Artificial Neural Networks in Pattern Recognition.
8th IAPR TC3 Workshop on Artificial Neural Networks in Pattern Recognition (ANNPR), Siena, Italy, 19-21 September 2018.
Springer.
pp. 346-358.
Lecture Notes in Computer Science ; 11081.
Available from: https://doi.org/10.1007/978-3-319-99978-4_27
-
Meier, Benjamin; Stadelmann, Thilo; Stampfli, Jan; Arnold, Marek; Cieliebak, Mark,
2017.
Fully convolutional neural networks for newspaper article segmentation [paper].
In:
Proceedings of the 14th IAPR International Conference on Document Analysis and Recognition (ICDAR).
14th IAPR International Conference on Document Analysis and Recognition (ICDAR 2017), Kyoto Japan, 13-15 November 2017.
Kyoto:
CPS.
Available from: https://doi.org/10.21256/zhaw-1533
-
Lukic, Yanick X.; Vogt, Carlo; Dürr, Oliver; Stadelmann, Thilo,
2017.
Learning embeddings for speaker clustering based on voice equality [paper].
In:
2017 IEEE 27th International Workshop on Machine Learning for Signal Processing (MLSP).
27th IEEE International Workshop on Machine Learning for Signal Processing (MLSP 2017), Tokyo, 25-28 September 2017.
IEEE.
Available from: https://doi.org/10.1109/MLSP.2017.8168166
-
Lukic, Yanick; Vogt, Carlo; Dürr, Oliver; Stadelmann, Thilo,
2016.
Speaker identification and clustering using convolutional neural networks [paper].
In:
2016 IEEE 26th International Workshop on Machine Learning for Signal Processing (MLSP),.
26th IEEE International Workshop on Machine Learning for Signal Processing (MLSP 2016), Vietri sul Mare, Italy, 13-16 Sept. 2016.
IEEE.
Available from: https://doi.org/10.1109/MLSP.2016.7738816
-
Arnold, Marek; Cieliebak, Mark; Stadelmann, Thilo; Stampfli, Jan; Uzdilli, Fatih,
2015.
PANOPTES : automated article segmentation of newspaper pages for "Real Time Print Media Monitoring“ [poster].
In:
Proceedings of SGAICO Annual Assembly and Workshop 2015.
SGAICO Annual Assembly and Workshop 2015, Geneva, 12 November 2015.
Swiss Group for Artificial Intelligence and Cognitive Science.
Available from: https://doi.org/10.21256/zhaw-7739
-
Stadelmann, Thilo; Stockinger, Kurt; Braschler, Martin; Cieliebak, Mark; Baudinot, Gerold; Dürr, Oliver; Ruckstuhl, Andreas,
2013.
Applied data science in Europe : challenges for academia in keeping up with a highly demanded topic [paper].
In:
Proceedings of the 9th European Computer Science Summit.
9th European Computer Science Summit, Amsterdam, Niederlande, 8-9 October 2013.
-
Segessenman, Jan; Stadelmann, Thilo; Andrew, Davison; Oliver, Dürr,
2023.
Assessing deep learning : a work program for the humanities in the age of artificial intelligence.
SSRN.
Available from: https://doi.org/10.21256/zhaw-28651
-
von der Malsburg, Christoph; Stadelmann, Thilo; Grewe, Benjamin F.,
2022.
A theory of natural intelligence.
arXiv.
Available from: https://doi.org/10.48550/ARXIV.2205.00002
-
Stadelmann, Thilo; Würsch, Christoph,
2020.
Maps for an uncertain future : teaching AI and machine learning using the ATLAS concept.
Winterthur:
ZHAW Zürcher Hochschule für Angewandte Wissenschaften.
Available from: https://doi.org/10.21256/zhaw-20885
-
Stadelmann, Thilo; Schilling, Frank-Peter,
2019.
Deep Learning in medizinischer Diagnostik und Qualitätskontrolle.
Netzwoche.
Available from: https://doi.org/10.21256/zhaw-20163
-
Amirian, Mohammadreza; Rombach, Katharina; Tuggener, Lukas; Schilling, Frank-Peter; Stadelmann, Thilo,
2019.
Efficient deep CNNs for cross-modal automated computer vision under time and space constraints [paper].
In:
ECML-PKDD 2019, Würzburg, Germany, 16-19 September 2019.
ZHAW Zürcher Hochschule für Angewandte Wissenschaften.
Available from: https://doi.org/10.21256/zhaw-18357
-
Stadelmann, Thilo; Cieliebak, Mark; Stockinger, Kurt,
2015.
Toward automatic data curation for open data.
ERCIM News.
2015(100), pp. 32-33.
Available from: https://doi.org/10.21256/zhaw-3643
-
Lanfant, Briac; Lack, Silvan; Meyer, Benjamin; Abdulkadir, Ahmed; Stadelmann, Thilo; Schmid, Daniel,
2024.
3D-master-based method for optimizing the cost calculatin of PBF-LB/M manufactured parts.
In:
Metal Additive Manufacturing Conference (MAMC), Aachen, Germany, 17-19 September 2024.
-
Stadelmann, Thilo,
2023.
KI als Chance für die angewandten Wissenschaften im Wettbewerb der Hochschulen.
In:
Bürgenstock-Konferenz der Schweizer Fachhochschulen und Pädagogischen Hochschulen, Luzern, Schweiz, 20.-21. Januar 2023.
Available from: https://www.buergenstock-konferenz.ch/images/2023/19_Website_Eingabe_Stadelmann.pdf
-
von der Malsburg, Christoph; Grewe, Benjamin F.; Stadelmann, Thilo,
2022.
Making sense of the natural environment.
In:
The Biannual Conference of the German Cognitive Science Society (KogWis), Freiburg, Germany, 5-7 September 2022.
Available from: https://stdm.github.io/downloads/papers/KogWis_2022.pdf
Publications before appointment at the ZHAW
- Thilo Stadelmann, Sven Johr, Michael Ditze, Florian Dittman, and Viktor Fässler. "FABELHAFT - Fahrerablenkung: Entwicklung eines Meta-Fahrerassistenzsystems durch Echtzeit-Audioklassifikation". In Proceedings of 28. VDI-VW Gemeinschaftstagung Fahrerassistenzsysteme und Integrierte Sicherheit, Wolfsburg, Germany, October 10.-11., 2012. VDI Wissensforum.
- Thilo Stadelmann. "Voice Modeling Methods for Automatic Speaker Recognition". Dissertation, Philipps-Universität Marburg. Available online, 2010.
- Christian Beecks, Thilo Stadelmann, Bernd Freisleben, and Thomas Seidl. "Visual Speaker Model Exploration", In Proceedings of the IEEE International Conference on Multimedia and Expo (ICME'2010), pages 727-728, Singapore, July 19-23, 2010, IEEE.
- Thilo Stadelmann, Yinghui Wang, Matthew Smith, Ralph Ewerth, and Bernd Freisleben. "Rethinking Algorithm Development and Design in Speech Processing". In Proceedings of the 20th International Conference on Pattern Recognition (ICPR'10), pages 4476-4479, Istanbul, Turkey, August 2010a. IAPR.
- Thilo Stadelmann and Bernd Freisleben. Dimension-Decoupled Gaussian Mixture Model for Short Utterance Speaker Recognition. In Proceedings of the 20th International Conference on Pattern Recognition (ICPR'10), pages 1602-1605, Istanbul, Turkey, August 2010a. IAPR.
- Thilo Stadelmann and Bernd Freisleben. "On the MixMax Model and Cepstral Features for Noise-Robust Voice Recognition". Technical Report, Marburg University, July 2010.
- Markus Mühling, Ralph Ewerth, Thilo Stadelmann, Bing Shi, and Bernd Freisleben. "University of Marburg at TRECVID 2009: High-Level Feature Extraction". In Proceedings of TREC Video Retrieval Evaluation Workshop (TRECVid'09). Available online, 2009.
- Ernst Juhnke, Dominik Seiler, Thilo Stadelmann, Tim Dörnemann, and Bernd Freisleben. "LCDL: An Extensible Framework for Wrapping Legacy Code". In Proceedings of International Workshop on @WAS Emerging Research Projects, Applications and Services (ERPAS'09), pages 638-642, Kuala Lumpur, Malaysia, December 2009.
- Dominik Seiler, Ralph Ewerth, Steffen Heinzl, Thilo Stadelmann, Markus Mühling, Bernd Freisleben, and Manfred Grauer. "Eine Service-Orientierte Grid-Infrastruktur zur Unterstützung Medienwissenschaftlicher Filmanalyse". In Proceedings of the Workshop on Gemeinschaften in Neuen Medien (GeNeMe'09), pages 79-89, Dresden, Germany, September 2009.
- Thilo Stadelmann and Bernd Freisleben. "Unfolding Speaker Clustering Potential: A Biomimetic Approach". In Proceedings of the ACM International Conference on Multimedia (ACMMM'09), pages 185-194, Beijing, China, October 2009. ACM.
- Thilo Stadelmann, Steffen Heinzl, Markus Unterberger, and Bernd Freisleben. "WebVoice: A Toolkit for Perceptual Insights into Speech Processing". In Proceedingsof the 2nd International Congress on Image and Signal Processing (CISP'09), pages 4358-4362, Tianjin, China, October 2009.
- Steffen Heinzl, Markus Mathes, Thilo Stadelmann, Dominik Seiler, Marcel Diegelmann, Helmut Dohmann, and Bernd Freisleben. "The Web Service Browser: Automatic Client Generation and Efficient Data Transfer for Web Services". In Proceedings of the 7th IEEE International Conference on Web Services (ICWS'09), pages 743-750, Los Angeles, CA, USA, July 2009a. IEEE Press.
- Steffen Heinzl, Dominik Seiler, Ernst Juhnke, Thilo Stadelmann, Ralph Ewerth, Manfred Grauer, and Bernd Freisleben. "A Scalable Service-Oriented Architecture for Multimedia Analysis, Synthesis, and Consumption". International Journal of Web and Grid Services, 5(3):219-260, 2009b. Inderscience Publishers.
- Markus Mühling, Ralph Ewerth, Thilo Stadelmann, Bing Shi, and Bernd Freisleben. "University of Marburg at TRECVID 2008: High-Level Feature Extraction". In Proceedings of TREC Video Retrieval Evaluation Workshop (TRECVid'08). Available online, 2008.
- Markus Mühling, Ralph Ewerth, Thilo Stadelmann, Bing Shi, Christian Zöfel, and Bernd Freisleben. "University of Marburg at TRECVID 2007: Shot Boundary Detection and High-Level Feature Extraction". In Proceedings of TREC Video Retrieval Evaluation Workshop (TRECVid'07). Available online, 2007a.
- Ralph Ewerth, Markus Mühling, Thilo Stadelmann, Julinda Gllavata, Manfred Grauer, and Bernd Freisleben. "Videana: A Software Toolkit for Scientific Film Studies". In Proceedings of the International Workshop on Digital Tools in Film Studies, pages 1-16, Siegen, Germany, 2007. Transcript Verlag.
- Markus Mühling, Ralph Ewerth, Thilo Stadelmann, Bernd Freisleben, Rene Weber, and Klaus Mathiak. "Semantic Video Analysis for Psychological Research on Violence in Computer Games". In Proceedings of the ACM International Conference on Image and Video Retrieval (CIVR'07), pages 611-618, Amsterdam, The Netherlands, July 2007b. ACM.
- Ralph Ewerth, Markus Mühling, Thilo Stadelmann, Ermir Qeli, Björn Agel, Dominik Seiler, and Bernd Freisleben. "University of Marburg at TRECVID 2006: Shot Boundary Detection and Rushes Task Results". In Proceedings of TREC Video Retrieval Evaluation Workshop (TRECVid'06). Available online, 2006.
- Thilo Stadelmann and Bernd Freisleben. "Fast and Robust Speaker Clustering Using the Earth Mover's Distance and MixMax Models". In Proceedings of the 31st IEEE International Conference on Acoustics, Speech, and Signal Processing (ICASSP'06), volume 1, pages 989-992, Toulouse, France, April 2006. IEEE.
- Ralph Ewerth, Christian Behringer, Tobias Kopp, Michael Niebergall, Thilo Stadelmann, and Bernd Freisleben. "University of Marburg at TRECVID 2005: Shot Boundary Detection and Camera Motion Estimation Results". In Proceedings of TREC Video Retrieval Evaluation Workshop (TRECVid'05). Available online, 2005.
Other publications
- Bibliometrics on Google Scholar
- Regular appearances as a speaker and panellist at congresses and industry events (see below for selected examples)
- Keynote: KSA Research & Innovation Day 2024
- Keynote: Oracle Data & AI Forum 2024
- Keynote: Schweizer Bibliothekskongress 2023
- Keynote: Direct Day 2023
- Deep Learning in the wild (Invited Talk @ ANNPR 2018)
- Keynote: Hospitality Summit 2024