Prof. Dr. Thilo Stadelmann
Prof. Dr. Thilo Stadelmann
ZHAW
School of Engineering
Centre for Artificial Intelligence
Technikumstrasse 71
8400 Winterthur
Arbeit an der ZHAW
Tätigkeit
- Professor für künstliche Intelligenz und maschinelles Lernen (Professur für Engineering ‒ Information)
- Leiter Forschungszentrum, Centre for Artificial Intelligence
- Leiter Forschungsgruppe, Machine Perception & Cognition
- Wissenschaftler
- Principal Investigator
- Redner
- Dozent, Consultant, Networker, Mentor, Leiter, Vater, Glaubender
Arbeits- und Forschungsschwerpunkte
- Künstliche Intelligenz und maschinelles Lernen: Deep Learning, Representation Learning, Mustererkennung, Computer Vision, Audioanalyse, intelligente Systeme
- Forschungsinteressen: Robustes und praktisches Deep Learning, industrielle Bildverarbeitung, medizinische Bildverarbeitung, Weltmodelle, generellere Künstliche Intelligenz, vertrauenswürdige KI, Lernen zu lernen, Dokumentenerkennung, Stimmerkennung, Datenwissenschaft
- Data Science
Lehrtätigkeit
- Dozent in den Bachelor-Studiengängen Informatik und Data Science, in der Weiterbildung sowie auf Stufe Master und Doktorat
- Gastdozent an verschiedenen Hochschulen und Universitäten im In- und Ausland
- BSc Modul Artificial Intelligence 1&2
- MSc Modul Machine Learning
- Betreuer studentischer Arbeiten Bsc/MSc/Weiterbildung
- Doktorvater
Lehrtätigkeit in der Weiterbildung
Berufserfahrung
- Gründer, Verwaltungsrat
AlpineAI AG
07 / 2023 - heute - Keynote Redner
Premium Speakers Agency
05 / 2023 - heute - Professor für AI/ML, Leiter ZHAW CAI, Leiter MPC Forschungsgruppe
ZHAW School of Engineering
04 / 2021 - heute - Co-Gründer und Vorstand
ZHAW Datalab
05 / 2013 - heute - Vorstand
Data innovation alliance
01 / 2016 - 11 / 2023 - Wissenschaftlicher Leiter
ZHAW digital
01 / 2019 - 03 / 2021 - Professor für Informatik
ZHAW Institut für angewandte Informationstechnologie
07 / 2018 - 03 / 2021 - Stv. Leitung Forschungsschwerpunkt Information Engineering
ZHAW Institut für angewandte Informationstechnologie
06 / 2015 - 03 / 2021 - Leiter
ZHAW Datalab
05 / 2013 - 12 / 2018 - Vizepräsident
Swiss Group of Artificial Intelligence and Cognitive Science (SGAICO)
02 / 2014 - 09 / 2018 - Dozent für Information Engineering
ZHAW Institut für angewandte Informationstechnologie
02 / 2013 - 06 / 2018 - Managing Director ad interim
Swiss Alliance for Data-Intensive Services
08 / 2017 - 02 / 2018 - Co-Organisator
Zürich Machine Learning & Data Science Meetup
09 / 2015 - 03 / 2017 - Fachgebietsleiter Smarte Software
TWT GmbH Science & Innovation
04 / 2011 - 06 / 2013 - Gesamtverantwortung interne IT
TWT GmbH Science & Innovation
04 / 2012 - 01 / 2013 - Software-Architekt & Projektleiter
TWT GmbH Science & Innovation
07 / 2010 - 03 / 2011 - Wissenschaftlicher Mitarbeiter im Bereich Audio- und Videomining
Philipps-Universität Marburg
09 / 2004 - 06 / 2010 - Diverse Nebentätigkeiten in SW-Entwicklung und Data Mining
diverse
02 / 1998 - 06 / 2010
Aus- und Weiterbildung
Ausbildung
- Dr. rer. nat. / Informatik
Philipps-Universität Marburg
08 / 2004 - 07 / 2010 - Dipl. Inform. (FH) / Technisch-wissenschaftliche Informatik
Fachhochschule Giessen-Friedberg
09 / 2000 - 07 / 2004
Weiterbildung
- Führungsausbildung ZHAW
Zürcher Hochschule für Angewandte Wissenschaften
06 / 2018 - CAS Hochschuldidaktik
Pädagogische Hochschule Zürich
06 / 2015
Netzwerk
Mitglied in Netzwerken
- Confederation of Laboratories for Artificial Intelligence Research in Europe (CLAIRE)
- European Centre for Living Technology (ECLT) (Fellow)
- IEEE CS, CIS, SMC (Senior Member)
- International Association for Pattern Recognition (IAPR) (Mitglied TC3)
- Deutsche Arbeitsgemeinschaft für Mustererkennung e.V. DAGM
- Gesellschaft für Klassifikation - Data Science Society (GfKl)
- Data innovation alliance (d+i) (Co-Founder)
- Premium Speakers Agency
- ZHAW Datalab (Vorstand)
- ZHAW Mitarbeitergebetstreffen
ORCID digital identifier
Auszeichnungen
- Finalist - "The Pascal"
Digital Economy Award
09 / 2024 - Honorable Mention - Best Paper Award
IEEE Swiss Conference on Data Science 2024
06 / 2024 - Betreuer mehrerer prämierter Abschlussarbeiten (u.a. ZHAW SGD Award, Siemens Excellence Award, Lab Sciences Award, Dr. Waldemar Jucker Award)
verschiedene
01 / 2024 - Most Cited Paper Award für "Automated Machine Learning in Practice"
IEEE SDS 2023
06 / 2023 - Impact Award 2022
ZHAW digital
12 / 2022 - DIZH Fellowship 2022
ZHAW digital
11 / 2022 - Swiss Data Science Conference Best Paper Award 2021
SDS 2021
06 / 2021 - Swiss Data Science Conference Best Poster Presentation Award 2020
SDS 2020
06 / 2020 - Lehrpreis "Best Teaching - Best Practices"
ZHAW
09 / 2019
Social Media
Medienpräsenz
- Regelmässige Medienpräsenz z.B. als Interviewpartner
- Welche Macht hat Künstliche Intelligenz? (Keynote auf dem KCF'2023)
- Plötzlich nützlich: ChatGPT läutet Tech-Revolution ein (Finanzen und Wirtschaft)
- Wie gefährlich wird KI für uns? Drei Horrorszenarien im Faktencheck (20 Minuten)
- Alleskönner ChatGPT: Wie selbstbestimmt ist die Künstliche Intelligenz? (SwissLife Select Blog)
- Künstliche Intelligenz: Jetzt kommt die ‘kambrische Explosion’ (NZZ am Sonntag)
- Mensch 2.0 (Fenster zum Sonntag)
Projekte
- Evidence-Based Diagnostic Assistance for Echocardiography / Stellv. Projektleiter:in / laufend
- Smarte Grünanlagen / Teammitglied / laufend
- AI for REAL-world NETwork operation / Teammitglied / laufend
- Stability of self-organizing net fragments as inductive bias for next-generation deep learning / Projektleiter:in / laufend
- Machine Learning für Body Composition Analysis / Projektleiter:in / laufend
- certAInty – A Certification Scheme for AI systems / Teammitglied / laufend
- LINA: Shared Large-scale Infrastructure for the Development and Safe Testing of Autonomous Systems / Projektleiter:in / laufend
- AC3T – AI powered CBCT for improved Combination Cancer Therapy / Teammitglied / laufend
- Accessible Scientific PDFs for All / Co-Projektleiter:in / laufend
- Europäische Konferenzserie zu Künstlicher Intelligenz (KI) in Industrie und Finanzwesen / Teammitglied / laufend
- Deep Dive ML on Simulated Enzyme-Electrolysis Performance / Projektleiter:in / abgeschlossen
- Enabling Scientific Diplomacy: Preparation of the GESDA Neurotechnology Compass / Stellv. Projektleiter:in / abgeschlossen
- Master3D – 3D-Master for a Digitized Manufacturing Platform / Stellv. Projektleiter:in / abgeschlossen
- DISTRAL: Industrial Process Monitoring for Injection Molding with Distributed Transfer Learning / Projektleiter:in / abgeschlossen
- Mobile Inclusion Lab / Co-Projektleiter:in / abgeschlossen
- AUTODIDACT – Automated Video Data Annotation to Empower the ICU Cockpit Platform for Clinical Decision Support / Co-Projektleiter:in / abgeschlossen
- TAILOR – Trustworthy and sample efficient vision transformers / Co-Projektleiter:in / abgeschlossen
- Pilot study machine learning for injection molding processes / Projektleiter:in / abgeschlossen
- DIR3CT: Deep Image Reconstruction through X-Ray Projection-based 3D Learning of Computed Tomography Volumes / Teammitglied / abgeschlossen
- TAILOR – Foundations of Trustworthy AI - Integrating Reasoning, Learning and Optimization / Projektleiter:in / abgeschlossen
- RealScore – Scanning of Real-World Sheet Music for a Digital Music Stand / Co-Projektleiter:in / abgeschlossen
- FWA: Visual Food Waste Analysis for Sustainable Kitchens / Co-Projektleiter:in / abgeschlossen
- Machbarkeitsstudie Reinforcement Learning Control für Heizsysteme / Teammitglied / abgeschlossen
- Radiosands / Teammitglied / abgeschlossen
- Ada – Advanced Algorithms for an Artificial Data Analyst / Projektleiter:in / abgeschlossen
- QualitAI - Quality control of industrial products via deep learning on images / Projektleiter:in / abgeschlossen
- FarmAI – Künstliche Intelligenz für den Farming Simulator / Teammitglied / abgeschlossen
- Libra: A One-Tool Solution for MLD4 Compliance / Teammitglied / abgeschlossen
- Deep-Learning-basierter Spracherkenner mit beschränkten Trainingsdaten (DeLLA) / Teammitglied / abgeschlossen
- DeepText: Intelligente Textanalyse mit Deep Learning / Teammitglied / abgeschlossen
- DeepScore: Digitales Notenpult mit musikalischem Verständnis durch Active Sheet Technologie / Projektleiter:in / abgeschlossen
- Complexity 4.0 / Stellv. Projektleiter:in / abgeschlossen
- Automatische Artikelsegmentierung von Zeitungsseiten für "Real Time Print Media Monitoring" (PANOPTES) / Teammitglied / abgeschlossen
- Data-Driven Condition Monitoring (DaCoMo) / Projektleiter:in / abgeschlossen
- iisiBox - Easy access to educational servers. / Projektleiter:in / abgeschlossen
- MobileMall / Projektleiter:in / abgeschlossen
- SODES – Swiss Open Data Exploration System / Teammitglied / abgeschlossen
- Talkalyzer / Teammitglied / abgeschlossen
Publikationen
-
Ali, Waqar; Vascon, Sebastiano; Stadelmann, Thilo; Pelillo, Marcello,
2024.
Hierarchical glocal attention pooling for graph classification.
Pattern Recognition Letters.
186, S. 71-77.
Verfügbar unter: https://doi.org/10.1016/j.patrec.2024.09.009
-
Jermain, Peter R; Oswald, Martin; Langdun, Tenzin; Wright, Santana; Khan, Ashraf; Stadelmann, Thilo; Abdulkadir, Ahmed; Yaroslavsky, Anna N.,
2024.
Deep learning-based cell segmentation for rapid optical cytopathology of thyroid cancer.
Scientific Reports.
14(1), S. 16389.
Verfügbar unter: https://doi.org/10.1038/s41598-024-64855-2
-
Dashti, Ali; Stadelmann, Thilo; Kohl, Thomas,
2024.
Machine learning for robust structural uncertainty quantification in fractured reservoirs.
Geothermics.
120(103012).
Verfügbar unter: https://doi.org/10.1016/j.geothermics.2024.103012
-
Schmitt-Koopmann, Felix; Huang, Elaine M.; Hutter, Hans-Peter; Stadelmann, Thilo; Darvishy, Alireza,
2024.
MathNet : a data-centric approach for printed mathematical expression recognition.
IEEE Access.
12, S. 76963-76974.
Verfügbar unter: https://doi.org/10.1109/ACCESS.2024.3404834
-
Neururer, Daniel; Dellwo, Volker; Stadelmann, Thilo,
2024.
Pattern Recognition Letters.
181, S. 64-69.
Verfügbar unter: https://doi.org/10.1016/j.patrec.2024.03.016
-
Yan, Peng; Abdulkadir, Ahmed; Luley, Paul-Philipp; Rosenthal, Matthias; Schatte, Gerrit A.; Grewe, Benjamin F.; Stadelmann, Thilo,
2024.
IEEE Access.
12, S. 3768-3789.
Verfügbar unter: https://doi.org/10.1109/ACCESS.2023.3349132
-
Tuggener, Lukas; Emberger, Raphael; Ghosh, Adhiraj; Sager, Pascal; Satyawan, Yvan Putra; Montoya, Javier; Goldschagg, Simon; Seibold, Florian; Gut, Urs; Ackermann, Philipp; Schmidhuber, Jürgen; Stadelmann, Thilo,
2024.
Real world music object recognition.
Transactions of the International Society for Music Information Retrieval.
7(1), S. 1-14.
Verfügbar unter: https://doi.org/10.5334/tismir.157
-
Segessenmann, Jan; Stadelmann, Thilo; Davison, Andrew; Dürr, Oliver,
2023.
Assessing deep learning : a work program for the humanities in the age of artificial intelligence.
AI and Ethics.
Verfügbar unter: https://doi.org/10.1007/s43681-023-00408-z
-
Amirian, Mohammadreza; Montoya-Zegarra, Javier A.; Herzig, Ivo; Eggenberger Hotz, Peter; Lichtensteiger, Lukas; Morf, Marco; Züst, Alexander; Paysan, Pascal; Peterlik, Igor; Scheib, Stefan; Füchslin, Rudolf Marcel; Stadelmann, Thilo; Schilling, Frank-Peter,
2023.
Medical Physics.
50(10), S. 6228-6242.
Verfügbar unter: https://doi.org/10.1002/mp.16405
-
Battaglia, Mattia; Comi, Ennio; Stadelmann, Thilo; Hiestand, Roman; Ruhstaller, Beat; Knapp, Evelyne,
2023.
Deep ensemble inverse model for image-based estimation of solar cell parameters.
APL Machine Learning.
1(3), S. 036108.
Verfügbar unter: https://doi.org/10.1063/5.0139707
-
Sager, Pascal; Salzmann, Sebastian; Burn, Felice; Stadelmann, Thilo,
2022.
Journal of Imaging.
8(8), S. 222.
Verfügbar unter: https://doi.org/10.3390/jimaging8080222
-
Schilling, Frank-Peter; Flumini, Dandolo; Füchslin, Rudolf Marcel; Gavagnin, Elena; Geller, Armando; Quarteroni, Silvia; Stadelmann, Thilo,
2022.
Archives of Data Science, Series A.
8(2).
Verfügbar unter: https://doi.org/10.5445/IR/1000146422
-
Stadelmann, Thilo; Klamt, Tino; Merkt, Philipp H.,
2022.
Data centrism and the core of Data Science as a scientific discipline.
Archives of Data Science, Series A.
8(2).
Verfügbar unter: https://doi.org/10.5445/IR/1000143637
-
Schmitt-Koopmann, Felix M.; Huang, Elaine M.; Hutter, Hans-Peter; Stadelmann, Thilo; Darvishy, Alireza,
2022.
FormulaNet : a benchmark dataset for mathematical formula detection.
IEEE Access.
10, S. 91588-91596.
Verfügbar unter: https://doi.org/10.1109/ACCESS.2022.3202639
-
Tuggener, Lukas; Schmidhuber, Jürgen; Stadelmann, Thilo,
2022.
Is it enough to optimize CNN architectures on ImageNet?.
Frontiers in Computer Science.
4(1041703).
Verfügbar unter: https://doi.org/10.3389/fcomp.2022.1041703
-
Wehrli, Samuel; Hertweck, Corinna; Amirian, Mohammadreza; Glüge, Stefan; Stadelmann, Thilo,
2021.
Bias, awareness, and ignorance in deep-learning-based face recognition.
AI and Ethics.
2(3), S. 509-522.
Verfügbar unter: https://doi.org/10.1007/s43681-021-00108-6
-
Stadelmann, Thilo; Keuzenkamp, Julian; Grabner, Helmut; Würsch, Christoph,
2021.
The AI-Atlas : didactics for teaching AI and machine learning on-site, online, and hybrid.
Education Sciences.
11(7), S. 318.
Verfügbar unter: https://doi.org/10.3390/educsci11070318
-
Tuggener, Lukas; Amirian, Mohammadreza; Benites de Azevedo e Souza, Fernando; von Däniken, Pius; Gupta, Prakhar; Schilling, Frank-Peter; Stadelmann, Thilo,
2020.
Design patterns for resource-constrained automated deep-learning methods.
AI.
1(4), S. 510-538.
Verfügbar unter: https://doi.org/10.3390/ai1040031
-
Dessimoz, Jean-Daniel; Koehler, Jana; Stadelmann, Thilo,
2015.
AI Magazine.
36(2), S. 102-105.
Verfügbar unter: https://doi.org/10.1609/aimag.v36i2.2591
-
Stockinger, Kurt; Stadelmann, Thilo,
2014.
Data Science für Lehre, Forschung und Praxis.
HMD Praxis der Wirtschaftsinformatik.
51(4), S. 469-479.
Verfügbar unter: https://doi.org/10.1365/s40702-014-0040-1
-
Stadelmann, Thilo; Schilling, Frank-Peter, Hrsg.,
2022.
Advances in deep neural networks for visual pattern recognition.
Basel:
MDPI.
Journal of Imaging ; 8.
Verfügbar unter: https://www.mdpi.com/journal/jimaging/special_issues/deep_neural_network
-
Schilling, Frank-Peter; Stadelmann, Thilo, Hrsg.,
2020.
Artificial neural networks in pattern recognition.
Basel:
MDPI.
Computers ; 9.
Verfügbar unter: https://www.mdpi.com/journal/computers/special_issues/ANNPR2020
-
Braschler, Martin; Stadelmann, Thilo; Stockinger, Kurt, Hrsg.,
2019.
Applied data science : lessons learned for the data-driven business.
1. Auflage.
Cham:
Springer.
ISBN 978-3-030-11820-4.
Verfügbar unter: https://doi.org/10.1007/978-3-030-11821-1
-
Stadelmann, Thilo,
2024.
Wegweiser Künstliche Intelligenz : verstehen, anwenden und zuversichtlich Zukunft gestalten
.
In:
Hersberger, Sebastian; Hoffmann, Christian Hugo, Hrsg.,
Wie die Künstliche Intelligenz die Wirtschaft verändert : Überblick über die theoretischen Grundlagen und Praxisbeispiele entlang von Ökosystemen.
Cham:
Springer.
-
Stadelmann, Thilo,
2019.
Wie maschinelles Lernen den Markt verändert
.
In:
Haupt, Reinhard; Schmitz, Stephan, Hrsg.,
Digitalisierung: Datenhype mit Werteverlust? : ethische Perspektiven für eine Schlüsseltechnologie.
Holzgerlingen:
SCM Hänssler.
S. 67-79.
Verfügbar unter: https://doi.org/10.21256/zhaw-18822
-
Stadelmann, Thilo; Tolkachev, Vasily; Sick, Beate; Stampfli, Jan; Dürr, Oliver,
2019.
Beyond ImageNet : deep learning in industrial practice
.
In:
Braschler, Martin; Stadelmann, Thilo; Stockinger, Kurt, Hrsg.,
Applied data science : lessons learned for the data-driven business.
Cham:
Springer.
S. 205-232.
Verfügbar unter: https://doi.org/10.1007/978-3-030-11821-1_12
-
Braschler, Martin; Stadelmann, Thilo; Stockinger, Kurt,
2019.
.
In:
Braschler, Martin; Stadelmann, Thilo; Stockinger, Kurt, Hrsg.,
Applied data science : lessons learned for the data-driven business.
Cham:
Springer.
S. 17-29.
Verfügbar unter: https://doi.org/10.1007/978-3-030-11821-1_2
-
Stadelmann, Thilo; Stockinger, Kurt; Heinatz-Bürki, Gundula; Braschler, Martin,
2019.
.
In:
Braschler, Martin; Stadelmann, Thilo; Stockinger, Kurt, Hrsg.,
Applied data science : lessons learned for the data-driven business.
Cham:
Springer.
S. 31-45.
Verfügbar unter: https://doi.org/10.1007/978-3-030-11821-1_3
-
Stadelmann, Thilo; Braschler, Martin; Stockinger, Kurt,
2019.
Introduction to applied data science
.
In:
Braschler, Martin; Stadelmann, Thilo; Stockinger, Kurt, Hrsg.,
Applied data science : lessons learned for the data-driven business.
Cham:
Springer.
S. 3-16.
Verfügbar unter: https://doi.org/10.1007/978-3-030-11821-1_1
-
Stockinger, Kurt; Braschler, Martin; Stadelmann, Thilo,
2019.
Lessons learned from challenging data science case studies
.
In:
Braschler, Martin; Stadelmann, Thilo; Stockinger, Kurt, Hrsg.,
Applied data science : lessons learned for the data-driven business.
Cham:
Springer.
S. 447-465.
Verfügbar unter: https://doi.org/10.1007/978-3-030-11821-1_24
-
Meierhofer, Jürg; Stadelmann, Thilo; Cieliebak, Mark,
2019.
.
In:
Braschler, Martin; Stadelmann, Thilo; Stockinger, Kurt, Hrsg.,
Applied data science : lessons learned for the data-driven business.
Cham:
Springer.
S. 47-61.
Verfügbar unter: https://doi.org/10.1007/978-3-030-11821-1_4
-
Hollenstein, Lukas; Lichtensteiger, Lukas; Stadelmann, Thilo; Amirian, Mohammadreza; Budde, Lukas; Meierhofer, Jürg; Füchslin, Rudolf Marcel; Friedli, Thomas,
2019.
Unsupervised learning and simulation for complexity management in business operations
.
In:
Braschler, Martin; Stadelmann, Thilo; Stockinger, Kurt, Hrsg.,
Applied data science : lessons learned for the data-driven business.
Cham:
Springer.
S. 313-331.
Verfügbar unter: https://doi.org/10.1007/978-3-030-11821-1_17
-
Stockinger, Kurt; Stadelmann, Thilo; Ruckstuhl, Andreas,
2016.
.
In:
Fasel, Daniel; Andreas, Meier, Hrsg.,
Big Data.
Wiesbaden:
Springer.
S. 59-81.
Edition HMD.
Verfügbar unter: https://doi.org/10.1007/978-3-658-11589-0_4
-
Bolt, Peter; Ziebart, Volker; Jaeger, Christian; Schmid, Nicolas; Stadelmann, Thilo; Füchslin, Rudolf Marcel,
2024.
A simulation study on energy optimization in building control with reinforcement learning [Paper].
In:
11th IAPR TC 3 Workshop on Artificial Neural Networks for Pattern Recognition (ANNPR'24), Montreal, Canada, 10-12 October 2024.
ZHAW Zürcher Hochschule für Angewandte Wissenschaften.
Verfügbar unter: https://doi.org/10.21256/zhaw-31129
-
Yan, Peng; Abdulkadir, Ahmed; Aguzzi, Giulia; Schatte, Gerrit A.; Grewe, Benjamin F.; Stadelmann, Thilo,
2024.
In:
2024 11th IEEE Swiss Conference on Data Science (SDS).
11th IEEE Swiss Conference on Data Science (SDS), Zurich, Switzerland, 30-31 May 2024.
IEEE.
S. 138-145.
Verfügbar unter: https://doi.org/10.1109/SDS60720.2024.00027
-
Meyer, Benjamin; Stadelmann, Thilo; Lüthi, Marcel,
2024.
ScalaGrad : a statically typed automatic differentiation library for safer data science [Paper].
In:
2024 11th IEEE Swiss Conference on Data Science (SDS).
11th IEEE Swiss Conference on Data Science (SDS), Zurich, Switzerland, 30-31 May 2024.
IEEE.
S. 229-232.
Verfügbar unter: https://doi.org/10.1109/SDS60720.2024.00040
-
Tuggener, Lukas; Sager, Pascal; Taoudi-Benchekroun, Yassine; Grewe, Benjamin F.; Stadelmann, Thilo,
2024.
So you want your private LLM at home? : a survey and benchmark of methods for efficient GPTs [Paper].
In:
2024 11th IEEE Swiss Conference on Data Science (SDS).
11th IEEE Swiss Conference on Data Science (SDS), Zurich, Switzerland, 30-31 May 2024.
IEEE.
Verfügbar unter: https://doi.org/10.1109/SDS60720.2024.00036
-
Lanfant, Briac; Lack, Silvan; Meyer, Benjamin; Abdulkadir, Ahmed; Stadelmann, Thilo; Schmid, Daniel,
2024.
3D-master-based method for optimizing the cost calculation of PBF-LB/M manufactured parts [Paper].
In:
Metal Additive Manufacturing Conference (MAMC), Aachen, Germany, 17-19 September 2024.
ZHAW Zürcher Hochschule für Angewandte Wissenschaften.
-
Begga, Ahmed; Ali, Waqar; Niculescu, Gabriel; Escolano, Francisco; Stadelmann, Thilo; Pelillo, Marcello,
2024.
Community-hop : enhancing node classification through community preference [Paper].
In:
Joint IAPR International Workshops on Statistical Techniques in Pattern Recognition and Structural and Syntactic Pattern Recognition (S+SSPR), Venice, Italy, 9-10 September 2024.
ZHAW Zürcher Hochschule für Angewandte Wissenschaften.
Verfügbar unter: https://doi.org/10.21256/zhaw-31438
-
Jermain, Peter R.; Oswald, Martin; Langdun, Tenzin; Wright, Santana; Khan, Ashraf; Stadelmann, Thilo; Abdulkadir, Ahmed; Yaroslavsky, Ann N.,
2024.
Rapid optical cytology with deep learning-based cell segmentation for diagnosis of thyroid lesions [Paper].
In:
Optica Biophotonics Congress: Biomedical Optics 2024 (Translational, Microscopy, OCT, OTS, BRAIN).
Optica Biophotonics Congress: Biomedical Optics, Fort Lauderdale, USA, 7-10 April 2024.
Optica Publishing Group.
S. MTu4A.5.
Verfügbar unter: https://doi.org/10.1364/MICROSCOPY.2024.MTu4A.5
-
Luley, Paul-Philipp; Deriu, Jan Milan; Yan, Peng; Schatte, Gerrit A.; Stadelmann, Thilo,
2023.
From concept to implementation : the data-centric development process for AI in industry [Paper].
In:
2023 10th IEEE Swiss Conference on Data Science (SDS).
10th IEEE Swiss Conference on Data Science (SDS), Zurich, Switzerland, 22-23 June 2023.
IEEE.
S. 73-76.
Verfügbar unter: https://doi.org/10.1109/SDS57534.2023.00017
-
Emberger, Raphael; Boss, Jens Michael; Baumann, Daniel; Seric, Marko; Huo, Shufan; Tuggener, Lukas; Keller, Emanuela; Stadelmann, Thilo,
2023.
Video object detection for privacy-preserving patient monitoring in intensive care [Paper].
In:
2023 10th IEEE Swiss Conference on Data Science (SDS).
10th IEEE Swiss Conference on Data Science (SDS), Zurich, Switzerland, 22-23 June 2023.
IEEE.
S. 85-88.
Verfügbar unter: https://doi.org/10.1109/SDS57534.2023.00019
-
Ali, Waqar; Vascon, Sebastiano; Stadelmann, Thilo; Pelillo, Marcello,
2023.
Quasi-CliquePool : hierarchical graph pooling for graph classification [Paper].
In:
SAC '23: Proceedings of the 38th ACM/SIGAPP Symposium on Applied Computing.
2nd Graph Models for Learning and Recognition (GMLR 2023) Track at the 38th ACM/SIGAPP Symposium on Applied Computing (SAC 2023), Tallinn, Estonia, 27 March - 2 April 2023.
New York:
Association for Computing Machinery.
S. 544-552.
Verfügbar unter: https://doi.org/10.1145/3555776.3578600
-
Herzig, Ivo; Paysan, Pascal; Scheib, Stefan; Züst, Alexander; Schilling, Frank-Peter; Montoya, Javier; Amirian, Mohammadreza; Stadelmann, Thilo; Eggenberger Hotz, Peter; Füchslin, Rudolf Marcel; Lichtensteiger, Lukas,
2022.
Deep learning-based simultaneous multi-phase deformable image registration of sparse 4D-CBCT [Poster].
In:
AAPM Annual Meeting, Washington, DC, USA, 10-14 July 2022.
American Association of Physicists in Medicine.
S. e325-e326.
Verfügbar unter: https://doi.org/10.1002/mp.15769
-
Amirian, Mohammadreza; Montoya, Javier; Gruss, Jonathan; Stebler, Yves D.; Bozkir, Ahmet Selman; Calandri, Marco; Schwenker, Friedhelm; Stadelmann, Thilo,
2021.
In:
Proceedings of CISP-BMEI’21.
14th International Congress on Image and Signal Processing, BioMedical Engineering and Informatics (CISP-BMEI), Shanghai, China, 23-25 October 2021.
ZHAW Zürcher Hochschule für Angewandte Wissenschaften.
Verfügbar unter: https://doi.org/10.21256/zhaw-23318
-
Simmler, Niclas; Sager, Pascal; Andermatt, Philipp; Chavarriaga, Ricardo; Schilling, Frank-Peter; Rosenthal, Matthias; Stadelmann, Thilo,
2021.
In:
Proceedings of the 8th SDS.
8th Swiss Conference on Data Science, Lucerne, Switzerland, 9 June 2021.
IEEE.
S. 26-31.
Verfügbar unter: https://doi.org/10.1109/SDS51136.2021.00012
-
Knapp, Evelyne; Battaglia, Mattia; Stadelmann, Thilo; Jenatsch, Sandra; Ruhstaller, Beat,
2021.
XGBoost trained on synthetic data to extract material parameters of organic semiconductors [Paper].
In:
Proceedings of the 8th SDS.
8th Swiss Conference on Data Science, Lucerne, Switzerland, 9 June 2021.
IEEE.
S. 46-51.
Verfügbar unter: https://doi.org/10.1109/SDS51136.2021.00015
-
Amirian, Mohammadreza; Tuggener, Lukas; Chavarriaga, Ricardo; Satyawan, Yvan Putra; Schilling, Frank-Peter; Schwenker, Friedhelm; Stadelmann, Thilo,
2021.
Two to trust : AutoML for safe modelling and interpretable deep learning for robustness [Paper].
In:
Postproceedings of the 1st TAILOR Workshop on Trustworthy AI at ECAI 2020.
1st TAILOR Workshop on Trustworthy AI at ECAI 2020, Santiago de Compostela, Spain, 29-30 August 2020.
Springer.
Verfügbar unter: https://doi.org/10.21256/zhaw-22061
-
Tuggener, Lukas; Satyawan, Yvan Putra; Pacha, Alexander; Schmidhuber, Jürgen; Stadelmann, Thilo,
2021.
The DeepScoresV2 dataset and benchmark for music object detection [Paper].
In:
2020 25th International Conference on Pattern Recognition (ICPR).
25th International Conference on Pattern Recognition 2020 (ICPR’20), Online, 10-15 January 2021.
IEEE.
S. 9188-9195.
Verfügbar unter: https://doi.org/10.1109/ICPR48806.2021.9412290
-
Glüge, Stefan; Amirian, Mohammadreza; Flumini, Dandolo; Stadelmann, Thilo,
2020.
How (not) to measure bias in face recognition networks [Paper].
In:
Schilling, Frank-Peter; Stadelmann, Thilo, Hrsg.,
Artificial Neural Networks in Pattern Recognition.
9th IAPR TC 3 Workshop on Artificial Neural Networks for Pattern Recognition (ANNPR'20), Winterthur, Switzerland, 2-4 September 2020.
Cham:
Springer.
Lecture Notes in Computer Science ; 12294.
Verfügbar unter: https://doi.org/10.1007/978-3-030-58309-5_10
-
Schilling, Frank-Peter; Stadelmann, Thilo, Hrsg.,
2020.
9th IAPR TC 3 Workshop on Artificial Neural Networks for Pattern Recognition (ANNPR'20), Winterthur, Switzerland, 2-4 September 2020.
Springer.
Lecture Notes in Computer Science ; 12294.
ISBN 978-3-030-58308-8.
Verfügbar unter: https://doi.org/10.1007/978-3-030-58309-5
-
Roost, Dano; Meier, Ralph; Toffetti Carughi, Giovanni; Stadelmann, Thilo,
2020.
Combining reinforcement learning with supervised deep learning for neural active scene understanding [Paper].
In:
Active Vision and Perception in Human(-Robot) Collaboration Workshop at IEEE RO-MAN 2020 (AVHRC’20), online, 31 August - 4 September 2020.
University of Essex.
Verfügbar unter: https://doi.org/10.21256/zhaw-20419
-
Roost, Dano; Meier, Ralph; Huschauer, Stephan; Nygren, Erik; Egli, Adrian; Weiler, Andreas; Stadelmann, Thilo,
2020.
Improving sample efficiency and multi-agent communication in RL-based train rescheduling [Paper].
In:
Proceedings of the 7th SDS.
7th Swiss Conference on Data Science, Lucerne, Switzerland, 26 June 2020.
IEEE.
Verfügbar unter: https://doi.org/10.21256/zhaw-19978
-
Tuggener, Lukas; Amirian, Mohammadreza; Rombach, Katharina; Lörwald, Stefan; Varlet, Anastasia; Westermann, Christian; Stadelmann, Thilo,
2019.
Automated machine learning in practice : state of the art and recent results [Paper].
In:
2019 6th Swiss Conference on Data Science (SDS).
6th Swiss Conference on Data Science (SDS), Bern, 14. Juni 2019.
IEEE.
S. 31-36.
Verfügbar unter: https://doi.org/10.1109/SDS.2019.00-11
-
Elezi, Ismail; Tuggener, Lukas; Pelillo, Marcello; Stadelmann, Thilo,
2018.
DeepScores and Deep Watershed Detection : current state and open issues [Paper].
In:
Proceedings of the 1st International Workshop on Reading Music Systems.
1st International Workshop on Reading Music Systems at ISMIR 2018, Paris, France, 20 September 2018.
Paris:
Society for Music Information Retrieval.
S. 13-14.
Verfügbar unter: https://doi.org/10.21256/zhaw-4777
-
Stadelmann, Thilo; Glinski-Haefeli, Sebastian; Gerber, Patrick; Dürr, Oliver,
2018.
Capturing suprasegmental features of a voice with RNNs for improved speaker clustering [Paper].
In:
Artificial Neural Networks in Pattern Recognition.
8th IAPR TC3 Workshop on Artificial Neural Networks in Pattern Recognition (ANNPR), Siena, Italy, 19-21 September 2018.
Springer.
S. 333-345.
Lecture Notes in Computer Science ; 11081.
Verfügbar unter: https://doi.org/10.1007/978-3-319-99978-4_26
-
Stadelmann, Thilo; Amirian, Mohammadreza; Arabaci, Ismail; Arnold, Marek; Duivesteijn, Gilbert François; Elezi, Ismail; Geiger, Melanie; Lörwald, Stefan; Meier, Benjamin Bruno; Rombach, Katharina; Tuggener, Lukas,
2018.
Deep learning in the wild [Paper].
In:
Artificial Neural Networks in Pattern Recognition.
8th IAPR TC3 Workshop on Artificial Neural Networks in Pattern Recognition (ANNPR), Siena, Italy, 19-21 September 2018.
Springer.
S. 17-38.
Lecture Notes in Computer Science ; 11081.
Verfügbar unter: https://doi.org/10.1007/978-3-319-99978-4_2
-
Tuggener, Lukas; Elezi, Ismail; Schmidhuber, Jürgen; Stadelmann, Thilo,
2018.
Deep watershed detector for music object recognition [Paper].
In:
Proceedings of the 19th International Society for Music Information Retrieval Conference.
19th International Society for Music Information Retrieval Conference, Paris, 23-27 September 2018.
Paris:
Society for Music Information Retrieval.
Verfügbar unter: https://doi.org/10.21256/zhaw-3760
-
Tuggener, Lukas; Elezi, Ismail; Schmidhuber, Jürgen; Pelillo, Marcello; Stadelmann, Thilo,
2018.
DeepScores : a dataset for segmentation, detection and classification of tiny objects [Paper].
In:
2018 24th International Conference on Pattern Recognition (ICPR).
24th International Conference on Pattern Recognition (ICPR 2018), Beijing, China, 20-28 August 2018.
IEEE.
S. 1-6.
Verfügbar unter: https://doi.org/10.1109/ICPR.2018.8545307
-
Meier, Benjamin Bruno; Elezi, Ismail; Amirian, Mohammadreza; Dürr, Oliver; Stadelmann, Thilo,
2018.
Learning neural models for end-to-end clustering [Paper].
In:
Artificial Neural Networks in Pattern Recognition.
8th IAPR TC3 Workshop on Artificial Neural Networks in Pattern Recognition (ANNPR), Siena, Italy, 19-21 September 2018.
Springer.
S. 126-138.
Lecture Notes in Computer Science ; 11081.
Verfügbar unter: https://doi.org/10.1007/978-3-319-99978-4_10
-
Hibraj, Feliks; Vascon, Sebastiano; Stadelmann, Thilo; Pelillo, Marcello,
2018.
Speaker clustering using dominant sets [Paper].
In:
2018 24th International Conference on Pattern Recognition (ICPR).
24th International Conference on Pattern Recognition (ICPR 2018), Beijing, China, 20-28 August 2018.
IEEE.
S. 3549-3554.
Verfügbar unter: https://doi.org/10.1109/ICPR.2018.8546067
-
Amirian, Mohammadreza; Schwenker, Friedhelm; Stadelmann, Thilo,
2018.
Trace and detect adversarial attacks on CNNs using feature response maps [Paper].
In:
Artificial Neural Networks in Pattern Recognition.
8th IAPR TC3 Workshop on Artificial Neural Networks in Pattern Recognition (ANNPR), Siena, Italy, 19-21 September 2018.
Springer.
S. 346-358.
Lecture Notes in Computer Science ; 11081.
Verfügbar unter: https://doi.org/10.1007/978-3-319-99978-4_27
-
Meier, Benjamin; Stadelmann, Thilo; Stampfli, Jan; Arnold, Marek; Cieliebak, Mark,
2017.
Fully convolutional neural networks for newspaper article segmentation [Paper].
In:
Proceedings of the 14th IAPR International Conference on Document Analysis and Recognition (ICDAR).
14th IAPR International Conference on Document Analysis and Recognition (ICDAR 2017), Kyoto Japan, 13-15 November 2017.
Kyoto:
CPS.
Verfügbar unter: https://doi.org/10.21256/zhaw-1533
-
Lukic, Yanick X.; Vogt, Carlo; Dürr, Oliver; Stadelmann, Thilo,
2017.
Learning embeddings for speaker clustering based on voice equality [Paper].
In:
2017 IEEE 27th International Workshop on Machine Learning for Signal Processing (MLSP).
27th IEEE International Workshop on Machine Learning for Signal Processing (MLSP 2017), Tokyo, 25-28 September 2017.
IEEE.
Verfügbar unter: https://doi.org/10.1109/MLSP.2017.8168166
-
Lukic, Yanick; Vogt, Carlo; Dürr, Oliver; Stadelmann, Thilo,
2016.
Speaker identification and clustering using convolutional neural networks [Paper].
In:
2016 IEEE 26th International Workshop on Machine Learning for Signal Processing (MLSP),.
26th IEEE International Workshop on Machine Learning for Signal Processing (MLSP 2016), Vietri sul Mare, Italy, 13-16 Sept. 2016.
IEEE.
Verfügbar unter: https://doi.org/10.1109/MLSP.2016.7738816
-
Arnold, Marek; Cieliebak, Mark; Stadelmann, Thilo; Stampfli, Jan; Uzdilli, Fatih,
2015.
PANOPTES : automated article segmentation of newspaper pages for "Real Time Print Media Monitoring“ [Poster].
In:
Proceedings of SGAICO Annual Assembly and Workshop 2015.
SGAICO Annual Assembly and Workshop 2015, Geneva, 12 November 2015.
Swiss Group for Artificial Intelligence and Cognitive Science.
Verfügbar unter: https://doi.org/10.21256/zhaw-7739
-
Stadelmann, Thilo; Stockinger, Kurt; Braschler, Martin; Cieliebak, Mark; Baudinot, Gerold; Dürr, Oliver; Ruckstuhl, Andreas,
2013.
Applied data science in Europe : challenges for academia in keeping up with a highly demanded topic [Paper].
In:
Proceedings of the 9th European Computer Science Summit.
9th European Computer Science Summit, Amsterdam, Niederlande, 8-9 October 2013.
-
Segessenman, Jan; Stadelmann, Thilo; Andrew, Davison; Oliver, Dürr,
2023.
Assessing deep learning : a work program for the humanities in the age of artificial intelligence.
SSRN.
Verfügbar unter: https://doi.org/10.21256/zhaw-28651
-
von der Malsburg, Christoph; Stadelmann, Thilo; Grewe, Benjamin F.,
2022.
A theory of natural intelligence.
arXiv.
Verfügbar unter: https://doi.org/10.48550/ARXIV.2205.00002
-
Stadelmann, Thilo; Würsch, Christoph,
2020.
Maps for an uncertain future : teaching AI and machine learning using the ATLAS concept.
Winterthur:
ZHAW Zürcher Hochschule für Angewandte Wissenschaften.
Verfügbar unter: https://doi.org/10.21256/zhaw-20885
-
Stadelmann, Thilo; Schilling, Frank-Peter,
2019.
Deep Learning in medizinischer Diagnostik und Qualitätskontrolle.
Netzwoche.
Verfügbar unter: https://doi.org/10.21256/zhaw-20163
-
Amirian, Mohammadreza; Rombach, Katharina; Tuggener, Lukas; Schilling, Frank-Peter; Stadelmann, Thilo,
2019.
Efficient deep CNNs for cross-modal automated computer vision under time and space constraints [Paper].
In:
ECML-PKDD 2019, Würzburg, Germany, 16-19 September 2019.
ZHAW Zürcher Hochschule für Angewandte Wissenschaften.
Verfügbar unter: https://doi.org/10.21256/zhaw-18357
-
Stadelmann, Thilo; Cieliebak, Mark; Stockinger, Kurt,
2015.
Toward automatic data curation for open data.
ERCIM News.
2015(100), S. 32-33.
Verfügbar unter: https://doi.org/10.21256/zhaw-3643
-
Lanfant, Briac; Lack, Silvan; Meyer, Benjamin; Abdulkadir, Ahmed; Stadelmann, Thilo; Schmid, Daniel,
2024.
3D-master-based method for optimizing the cost calculatin of PBF-LB/M manufactured parts.
In:
Metal Additive Manufacturing Conference (MAMC), Aachen, Germany, 17-19 September 2024.
-
Stadelmann, Thilo,
2023.
KI als Chance für die angewandten Wissenschaften im Wettbewerb der Hochschulen.
In:
Bürgenstock-Konferenz der Schweizer Fachhochschulen und Pädagogischen Hochschulen, Luzern, Schweiz, 20.-21. Januar 2023.
Verfügbar unter: https://www.buergenstock-konferenz.ch/images/2023/19_Website_Eingabe_Stadelmann.pdf
-
von der Malsburg, Christoph; Grewe, Benjamin F.; Stadelmann, Thilo,
2022.
Making sense of the natural environment.
In:
The Biannual Conference of the German Cognitive Science Society (KogWis), Freiburg, Germany, 5-7 September 2022.
Verfügbar unter: https://stdm.github.io/downloads/papers/KogWis_2022.pdf
Publikationen vor Tätigkeit an der ZHAW
- Thilo Stadelmann, Sven Johr, Michael Ditze, Florian Dittman, and Viktor Fässler. "FABELHAFT - Fahrerablenkung: Entwicklung eines Meta-Fahrerassistenzsystems durch Echtzeit-Audioklassifikation". In Proceedings of 28. VDI-VW Gemeinschaftstagung Fahrerassistenzsysteme und Integrierte Sicherheit, Wolfsburg, Germany, October 10.-11., 2012. VDI Wissensforum.
- Thilo Stadelmann. "Voice Modeling Methods for Automatic Speaker Recognition". Dissertation, Philipps-Universität Marburg. Available online, 2010.
- Christian Beecks, Thilo Stadelmann, Bernd Freisleben, and Thomas Seidl. "Visual Speaker Model Exploration", In Proceedings of the IEEE International Conference on Multimedia and Expo (ICME'2010), pages 727-728, Singapore, July 19-23, 2010, IEEE.
- Thilo Stadelmann, Yinghui Wang, Matthew Smith, Ralph Ewerth, and Bernd Freisleben. "Rethinking Algorithm Development and Design in Speech Processing". In Proceedings of the 20th International Conference on Pattern Recognition (ICPR'10), pages 4476-4479, Istanbul, Turkey, August 2010a. IAPR.
- Thilo Stadelmann and Bernd Freisleben. Dimension-Decoupled Gaussian Mixture Model for Short Utterance Speaker Recognition. In Proceedings of the 20th International Conference on Pattern Recognition (ICPR'10), pages 1602-1605, Istanbul, Turkey, August 2010a. IAPR.
- Thilo Stadelmann and Bernd Freisleben. "On the MixMax Model and Cepstral Features for Noise-Robust Voice Recognition". Technical Report, Marburg University, July 2010.
- Markus Mühling, Ralph Ewerth, Thilo Stadelmann, Bing Shi, and Bernd Freisleben. "University of Marburg at TRECVID 2009: High-Level Feature Extraction". In Proceedings of TREC Video Retrieval Evaluation Workshop (TRECVid'09). Available online, 2009.
- Ernst Juhnke, Dominik Seiler, Thilo Stadelmann, Tim Dörnemann, and Bernd Freisleben. "LCDL: An Extensible Framework for Wrapping Legacy Code". In Proceedings of International Workshop on @WAS Emerging Research Projects, Applications and Services (ERPAS'09), pages 638-642, Kuala Lumpur, Malaysia, December 2009.
- Dominik Seiler, Ralph Ewerth, Steffen Heinzl, Thilo Stadelmann, Markus Mühling, Bernd Freisleben, and Manfred Grauer. "Eine Service-Orientierte Grid-Infrastruktur zur Unterstützung Medienwissenschaftlicher Filmanalyse". In Proceedings of the Workshop on Gemeinschaften in Neuen Medien (GeNeMe'09), pages 79-89, Dresden, Germany, September 2009.
- Thilo Stadelmann and Bernd Freisleben. "Unfolding Speaker Clustering Potential: A Biomimetic Approach". In Proceedings of the ACM International Conference on Multimedia (ACMMM'09), pages 185-194, Beijing, China, October 2009. ACM.
- Thilo Stadelmann, Steffen Heinzl, Markus Unterberger, and Bernd Freisleben. "WebVoice: A Toolkit for Perceptual Insights into Speech Processing". In Proceedingsof the 2nd International Congress on Image and Signal Processing (CISP'09), pages 4358-4362, Tianjin, China, October 2009.
- Steffen Heinzl, Markus Mathes, Thilo Stadelmann, Dominik Seiler, Marcel Diegelmann, Helmut Dohmann, and Bernd Freisleben. "The Web Service Browser: Automatic Client Generation and Efficient Data Transfer for Web Services". In Proceedings of the 7th IEEE International Conference on Web Services (ICWS'09), pages 743-750, Los Angeles, CA, USA, July 2009a. IEEE Press.
- Steffen Heinzl, Dominik Seiler, Ernst Juhnke, Thilo Stadelmann, Ralph Ewerth, Manfred Grauer, and Bernd Freisleben. "A Scalable Service-Oriented Architecture for Multimedia Analysis, Synthesis, and Consumption". International Journal of Web and Grid Services, 5(3):219-260, 2009b. Inderscience Publishers.
- Markus Mühling, Ralph Ewerth, Thilo Stadelmann, Bing Shi, and Bernd Freisleben. "University of Marburg at TRECVID 2008: High-Level Feature Extraction". In Proceedings of TREC Video Retrieval Evaluation Workshop (TRECVid'08). Available online, 2008.
- Markus Mühling, Ralph Ewerth, Thilo Stadelmann, Bing Shi, Christian Zöfel, and Bernd Freisleben. "University of Marburg at TRECVID 2007: Shot Boundary Detection and High-Level Feature Extraction". In Proceedings of TREC Video Retrieval Evaluation Workshop (TRECVid'07). Available online, 2007a.
- Ralph Ewerth, Markus Mühling, Thilo Stadelmann, Julinda Gllavata, Manfred Grauer, and Bernd Freisleben. "Videana: A Software Toolkit for Scientific Film Studies". In Proceedings of the International Workshop on Digital Tools in Film Studies, pages 1-16, Siegen, Germany, 2007. Transcript Verlag.
- Markus Mühling, Ralph Ewerth, Thilo Stadelmann, Bernd Freisleben, Rene Weber, and Klaus Mathiak. "Semantic Video Analysis for Psychological Research on Violence in Computer Games". In Proceedings of the ACM International Conference on Image and Video Retrieval (CIVR'07), pages 611-618, Amsterdam, The Netherlands, July 2007b. ACM.
- Ralph Ewerth, Markus Mühling, Thilo Stadelmann, Ermir Qeli, Björn Agel, Dominik Seiler, and Bernd Freisleben. "University of Marburg at TRECVID 2006: Shot Boundary Detection and Rushes Task Results". In Proceedings of TREC Video Retrieval Evaluation Workshop (TRECVid'06). Available online, 2006.
- Thilo Stadelmann and Bernd Freisleben. "Fast and Robust Speaker Clustering Using the Earth Mover's Distance and MixMax Models". In Proceedings of the 31st IEEE International Conference on Acoustics, Speech, and Signal Processing (ICASSP'06), volume 1, pages 989-992, Toulouse, France, April 2006. IEEE.
- Ralph Ewerth, Christian Behringer, Tobias Kopp, Michael Niebergall, Thilo Stadelmann, and Bernd Freisleben. "University of Marburg at TRECVID 2005: Shot Boundary Detection and Camera Motion Estimation Results". In Proceedings of TREC Video Retrieval Evaluation Workshop (TRECVid'05). Available online, 2005.
Übrige Publikationen
- Bibliometriken auf Google Scholar
- Regelmässige Auftritte als Redner und Diskussionsteilnehmer auf Kongressen und Industrieveranstaltungen (ausgewählte Beispiele siehe unten)
- Keynote: KSA Research & Innovation Day 2024
- Keynote: Oracle Data & AI Forum 2024
- Keynote: Schweizer Bibliothekskongress 2023
- Keynote: Direct Day 2023
- Deep Learning in the wild (Invited Talk @ ANNPR 2018)
- Keynote: Hospitality Summit 2024