Automated Airborne Pest Monitoring AAPM of Drosophila suzukii in Crops and Natural Habitats
Beschreibung
Drosophila suzukii has become a serious pest in Europe since its spread in 2008 to Spain and Italy, attacking many soft-skinned crops such as several berry species, cherry and grapevines. Pest monitoring is the basis of its control. Therefore, an efficient and accurate monitoring system is essential in order to identify the presence of D. suzukii in the crops and the surrounding area, and to prevent damage to economically valuable fruit crops. Existing methods for monitoring D. suzukii are costly, time and labor intensive and consequently conducted at low spatial resolution and prone to errors. We therefore propose to develop a novel system to overcome current monitoring limitations consisting of traps which are monitored by means of an Unmanned Aerial Vehicle (UAV) and an automatic image processing pipeline for the identification and count of number of D. suzukii per trap location. The automated monitoring has an advantage over current methods in terms of (1) labor intensity, (2) sampling interval, (3) automatic integration into DSS, (4) monitoring of diverse and even hardly accessible habitats, and (5) population monitoring in vast areas in relation to climatic and other geo-processed parameters. A multi-variable sticky trap evaluation will allow selecting the most suitable one to attract the target insect. A small multi-rotor UAV platform will be flown at multiple intervals to capture high resolution color aerial photographs of the insect traps. The photographs will be subjected to image processing algorithms to identify the presence or absence of D. suzukii and their counts. The data collected will be transferred to a decision support system (DSS) to provide valuable information for growers in a format that is both meaningful and accessible, thereby demonstrating the added value and social importance of applied science and technology to the wider community and food security.
Eckdaten
Projektleitung
Dr. Johannes Fahrentrapp
Projektteam
Prof. Dr. DR Green, Dr. L Kooistra
Projektpartner
University of Aberdeen / Centre for Environmental Monitoring and Mapping; Wageningen University and Research / Unmanned Aerial Remote Sensing Facility
Projektstatus
abgeschlossen, 04/2017 - 03/2020
Institut/Zentrum
Institut für Umwelt und Natürliche Ressourcen (IUNR)
Drittmittelgeber
EU und andere Internationale Programme
Projektvolumen
282'996 EUR
Weiterführende Dokumente und Links
Publikationen
-
Deep learning for automated detection of Drosophila suzukii : potential for UAV‐based monitoring
2020 Roosjen, Peter PJ; Kellenberger, Benjamin; Kooistra, Lammert; Green, David R; Fahrentrapp, Johannes
-
Autonomous UAV-based insect monitoring
2020 Fahrentrapp, Johannes; Roosjen, Peter; Kooistra, Lammert; Green, David R.; Gregory, Billy J.
-
ERA-Net C-IPM
2020 Fahrentrapp, Johannes
-
Automated airborne pest monitoring of drosophila suzukii in crops and natural habitats
2019 Fahrentrapp, Johannes; Roosjen, Peter; Kooistra, Lammer; Gregory, Billy J.; Green, David R.
-
Detection of gray mold leaf infections prior to visual symptom appearance using a five-band multispectral sensor
2019 Fahrentrapp, Johannes; Ria, Francesco; Geilhausen, Martin; Panassiti, Bernd
-
AAPM : autmoated airborne pest monitoring
2019 Fahrentrapp, Johannes; Kooistra, Lammert; Green, David R.; Roosjen, Peter; Gregory, Billy
-
Monitorowanie szkodników w trybie inteligentnym
2019 Fahrentrapp, Johannes
-
Schädlingsmonitoring mit modernsten Technologien
2019 Fahrentrapp, Johannes
-
Die KEF im Griff dank moderner Technologie?
2019 Fahrentrapp, Johannes
-
Automated airborne pest monitoring : a novel technological approach to monitor Drosophila suzukii
2019 Fahrentrapp, Johannes
-
Schädling unter Beobachtung
2019 Fahrentrapp, Johannes
-
Kirschessigfliege aus der Vogelperspektive
2019 Fahrentrapp, Johannes
-
Drohnen gegen KEF
2019 Fahrentrapp, Johannes
-
Automated airborne pest monitoring : a novel technological approach to monitor Drosophila suzukii
2019 Fahrentrapp, Johannes
-
Drohnen helfen, die Kirschessigfliege automatisch zu überwachen
2019 Fahrentrapp, Johannes
-
Schädlingsmonitoring mit modernsten Technologien
2019 Fahrentrapp, Johannes
-
AAPM : automated airborne pest monitoring
2018 Fahrentrapp, Johannes; Roosjen, Peter; Kooistra, Lammert; Gregory, Billy J.; Green, David R.
-
AAPM : automated airborne pest monitoring
2018 Fahrentrapp, Johannes; Roosjen, Peter; Kooistra, Lammert; Green, David R.
-
AAPM : automated airborne pest monitoring
2018 Fahrentrapp, Johannes
-
The distance between forests and crops affects the abundance of Drosophila suzukii during fruit ripening, but not during harvest
2018 Cahenzli, Fabian; Bühlmann, Irene; Daniel, Claudia; Fahrentrapp, Johannes