Data-Driven Condition Monitoring (DaCoMo) (DaCoMo)
Beschreibung
The goal of DaCoMo is to develop a novel, totally data driven process for predictive maintenance which needs no prior knowledge of the machine itself or its components in order to detect and predict faults. This increases the efficiency of the service: neither frequency spectra need to be input nor visually inspected by experts. The challenge lies in the acquisition of data sets with representative error signatures and in learning the fault characteristics purely from data.
Eckdaten
Projektleitung
Projektteam
Dr. Oliver Dürr, Gabriel Eyyi, Thierry Musy
Projektpartner
mechmine LLC (Mechmine GmbH)
Projektstatus
abgeschlossen, 06/2015 - 09/2016
Institut/Zentrum
Institut für Informatik (InIT); Centre for Artificial Intelligence (CAI); Institut für Datenanalyse und Prozessdesign (IDP)
Drittmittelgeber
KTI
Projektvolumen
940'000 CHF
Publikationen
-
Lessons learned from challenging data science case studies
2019 Stockinger, Kurt; Braschler, Martin; Stadelmann, Thilo
-
Beyond ImageNet : deep learning in industrial practice
2019 Stadelmann, Thilo; Tolkachev, Vasily; Sick, Beate; Stampfli, Jan; Dürr, Oliver
-
Applied data science : lessons learned for the data-driven business
2019