Eingabe löschen

Kopfbereich

Hauptnavigation

Feature Learning for Bayesian Inference

Beschreibung

The goal of this project is to use interpretable Machine Learning (ML) to find low-dimensional features in high-dimensional noisy data generated by (i) stochastic models or (ii) real systems. In both cases, the problem is to disentangle the effect of high-dimensional disturbances, such as noise or unobserved inputs, from the effects of relevant characteristics (model parameters in the first case, system properties in the latter).

Eckdaten

Projektleitung

Prof. Dr. Antonietta Mira

Co-Projektleitung

Prof. Dr. Fernando Perez-Cruz

Projektteam

Dr. Carlo Albert, Prof. Alessandro Laio, Prof. Jukka-Pekka Onnela, Dr. Simone Ulzega

Projektstatus

laufend, gestartet 09/2022

Institut/Zentrum

Institut für Computational Life Sciences (ICLS)

Drittmittelgeber

SNF