Dr. Alisa Rupenyan-Vasileva
Dr. Alisa Rupenyan-Vasileva
ZHAW
School of Engineering
Technikumstrasse 71
8400 Winterthur
Arbeit an der ZHAW
Tätigkeit
Rieter Stiftungsprofessur Industrial AI
Arbeits- und Forschungsschwerpunkte
Industrial AI, Automation of manufacturing systems, robotics, process optimization
Lehrtätigkeit
- CAS Machine Intelligence - Machine learning module
- Machine Learning and Data Mining
- Artificial Intelligence I
Berufserfahrung
- Senior scientist, Automatic control laboratory
ETH Zurich
08 / 2020 - 07 / 2023 - Group leader, Automation and control group
inspire AG
02 / 2018 - 07 / 2023 - Head of Application Development
Qualysense AG
01 / 2014 - 09 / 2017 - Postdoctoral fellow (ETH fellow on individual grant)
ETH Zurich
01 / 2011 - 09 / 2013 - Postdoctoral researcher
University of Amsterdam
01 / 2010 - 12 / 2010
Aus- und Weiterbildung
Ausbildung
- PhD / Physics
Vrije Universiteit Amsterdam, The Netherlands
01 / 2005 - 12 / 2009 - MSc / Laser physics and optics
Sofia University, Bulgaria
10 / 2004 - 12 / 2005 - BSc / Engineering Physics
Sofia University, Bulgaria
10 / 1999 - 12 / 2004
Netzwerk
Mitglied in Netzwerken
- International Federation for Automatic Control - Industry Committee
- Swiss Informatics Society
- IEEE member
- Innosuisse (innovation expert)
- NCCR Automation
ORCID digital identifier
Projekte
- Continuous optimization and control for advanced manufacturing / Projektleiter:in / laufend
- Digital Manufacturing as a Service Technology / Projektleiter:in / laufend
- Smarte Grünanlagen / Teammitglied / laufend
- Intelligent planning for robot-based manufacturing / Projektleiter:in / laufend
Publikationen
-
Liao-McPherson, Dominic; Balta, Efe C.; Afrasiabi, Mohamadreza; Rupenyan-Vasileva, Alisa; Bambach, Markus; Lygeros, John,
2024.
Layer-to-layer melt pool control in laser powder bed fusion.
IEEE Transactions on Control Systems Technology.
Verfügbar unter: https://doi.org/10.1109/TCST.2024.3464118
-
Nobar, Mahdi; Keller, Jürg; Rupenyan, Alisa; Khosravi, Mohammad; Lygeros, John,
2024.
Guided Bayesian optimization : data-efficient controller tuning with digital twin.
IEEE Transactions on Automation Science and Engineering.
Verfügbar unter: https://doi.org/10.1109/TASE.2024.3454176
-
Guidetti, Xavier; Mingard, Nathan; Cruz-Olivera, Raul; Nagel, Yannick; Rueppel, Marvin; Rupenyan-Vasileva, Alisa; Balta, Efe C.; Lygeros, John,
2024.
Force controlled printing for material extrusion additive manufacturing.
Additive Manufacturing.
89(104297).
Verfügbar unter: https://doi.org/10.1016/j.addma.2024.104297
-
König, Christopher; Ozols, Miks; Makarova, Anastasia; Balta, Efe C.; Krause, Andreas; Rupenyan, Alisa,
2023.
Safe risk-averse bayesian optimization for controller tuning.
IEEE Robotics and Automation Letters.
Verfügbar unter: https://doi.org/10.1109/LRA.2023.3325991
-
Kavas, Barış; Balta, Efe C.; Tucker, Michael; Rupenyan, Alisa; Lygeros, John; Bambach, Markus,
2023.
Additive Manufacturing.
78(103847).
Verfügbar unter: https://doi.org/10.1016/j.addma.2023.103847
-
Rupenyan, Alisa; Balta, Efe C.,
2023.
Robotics and manufacturing automation
.
In:
The impact of automatic control research on industrial innovation : enabling a sustainable future.
Wiley.
S. 169-189.
-
Li, Jialin; Zagorowska, Marta; De Pasquale, Giulia; Rupenyan-Vasileva, Alisa; Lygeros, John,
2024.
Safe time-varying optimization based on Gaussian processes with spatio-temporal kernel [Paper].
In:
Conference on Neural Information Processing Systems, NeurIPS 2024, Vancouver, Canada, 10-15 December 2024.
Vancouver:
NeurIPS.
Verfügbar unter: https://doi.org/10.21256/zhaw-31795
-
Yan, Jiaqi; Chakrabarty, Ankush; Rupenyan, Alisa; Lygeros, John,
2024.
In:
IEEE 20th International Conference on Automation Science and Engineering (CASE).
IEEE 20th International Conference on Automation Science and Engineering (CASE), Bari, Italy, 28 August - 1 September 2024.
IEEE.
S. 1910-1915.
Verfügbar unter: https://doi.org/10.1109/CASE59546.2024.10711717
-
Zagorowska, Marta; Ortmann, Lukas; Rupenyan-Vasileva, Alisa; Mercangöz, Mehmet; Imsland, Lars,
2024.
Tuning of Online Feedback Optimization for setpoint tracking in centrifugal compressors [Paper].
In:
12th IFAC Symposium on Advanced Control of Chemical Processes (ADCHEM), Toronto, Canada, 14-17 July 2024.
Elsevier.
S. 881-886.
Verfügbar unter: https://doi.org/10.1016/j.ifacol.2024.08.448
Publikationen vor Tätigkeit an der ZHAW
An up-to-date list of publications can be found on Google Scholar.