Intelligent Vision Systems Group
"Unser Ziel ist es, die KI-, Deep Learning- und Machine Learning-Forschung methodisch voranzutreiben und gleichzeitig maßgeschneiderte Lösungen für Anwendungen in der Praxis zu entwickeln, die dem technologischen Fortschritt und ebenso der Menschheit zu Gute kommen."
Expertise
- Maschinelles Sehen
- Produktive ML Systeme (MLOps)
- Vertrauenswürdige und zertifizierbare KI
Wir forschen in erster Linie im Bereich des maschinellen Sehens, basierend auf 2-, 3- oder 4-D-Bild- oder Videodaten, um Klassifizierungs-, Objekterkennungs- oder andere visuelle Aufgaben zu lösen. Hierzu entwickeln wir hochmoderne viellagige neuronale Netzwerk-Architekturen. Wir sind besonders an neuesten Entwicklungen einschließlich Vision Transformers und sog. Gauge-equivariant Architekturen interessiert. Zu unseren Anwendungsfeldern gehören unter anderem industrielle Qualitätskontrolle, medizinische Bildgebung und Diagnose (Computertomographie) sowie Beobachtungsdaten von Erde (Satelliten) und Himmel (Radioastronomie). Wir interessieren uns auch für hybride Ansätze der KI sowie für geometrisches Deep Learning. Unser zweites Hauptinteresse gilt MLOps, was ein Oberbegriff für Verfahren zum Aufbau vollständiger, produktionsreifer und skalierbarer Systeme für maschinelles Lernen ist. Schließlich interessieren wir uns für Methoden zur Entwicklung sicherer, vertrauenswürdiger und zertifizierbarer KI-Systeme, die den aktuellen und künftigen Rechtsvorschriften entsprechen.
Angebote
- Einblick: Keynotes, Trainings
- KI-Beratung: Workshops, Expertenunterstützung, Beratung, Technikfolgenabschätzung
- Forschung und Entwicklung: kleine bis grosse Forschungsprojekte, Drittmittelforschung, studentische Projekte, praxiserprobte Prototypen
Team
Projekte
Im Zuge des Neuaufbaus der Forschungsdatenbank sind die bisherigen Listen mit Forschungsprojekten nicht mehr abrufbar. Die Zukunft geht in Richtung Volltextsuche und Filterung, um bestmögliche Suchergebnisse für unsere Besucher:innen zur Verfügung zu stellen.
In der Zwischenzeit kannst du die Projekte ganz einfach unter folgenden Link per Textsuche finden: «Zur neuen Suche in der Projektdatenbank»
Publikationen
- Vorherige Seite
- Seite 01
- Seite 02
- Seite 03
- Seite 04
-
Tuggener, Lukas; Amirian, Mohammadreza; Benites de Azevedo e Souza, Fernando; von Däniken, Pius; Gupta, Prakhar; Schilling, Frank-Peter; Stadelmann, Thilo,
2020.
Design patterns for resource-constrained automated deep-learning methods.
AI.
1(4), S. 510-538.
Verfügbar unter: https://doi.org/10.3390/ai1040031
-
Schilling, Frank-Peter; Stadelmann, Thilo, Hrsg.,
2020.
Artificial neural networks in pattern recognition.
Basel:
MDPI.
Computers ; 9.
Verfügbar unter: https://www.mdpi.com/journal/computers/special_issues/ANNPR2020
-
Schilling, Frank-Peter; Stadelmann, Thilo, Hrsg.,
2020.
9th IAPR TC 3 Workshop on Artificial Neural Networks for Pattern Recognition (ANNPR'20), Winterthur, Switzerland, 2-4 September 2020.
Springer.
Lecture Notes in Computer Science ; 12294.
ISBN 978-3-030-58308-8.
Verfügbar unter: https://doi.org/10.1007/978-3-030-58309-5
-
Stadelmann, Thilo; Schilling, Frank-Peter,
2019.
Deep Learning in medizinischer Diagnostik und Qualitätskontrolle.
Netzwoche.
Verfügbar unter: https://doi.org/10.21256/zhaw-20163
-
Amirian, Mohammadreza; Rombach, Katharina; Tuggener, Lukas; Schilling, Frank-Peter; Stadelmann, Thilo,
2019.
Efficient deep CNNs for cross-modal automated computer vision under time and space constraints [Paper].
In:
ECML-PKDD 2019, Würzburg, Germany, 16-19 September 2019.
ZHAW Zürcher Hochschule für Angewandte Wissenschaften.
Verfügbar unter: https://doi.org/10.21256/zhaw-18357