Intelligent Information Systems
We Derive Value from Data and Information
- Wie macht man Information nutzbar?
- Wie findet man neue Themen und Trends?
- Wie gewinnt man aus heterogenen/unstrukturierten Daten und Informationen Erkenntnisse?
- Wie macht man Daten auf eine natürliche Art verfügbar?
- Wie kann man mit Software Daten automatisiert verknüpfen?
Mit diesen und vielen weiteren Fragen beschäftigt sich die Forschungsgruppe Intelligent Information Systems (IIS) des InIT. Die oft negativ thematisierte Daten- und Informationsflut begreifen wir als Chance; mit den richtigen Mitteln können zur Such- und Analysezeit Daten und Informationen integriert und nutzbar gemacht werden.
Die Forschungsgruppe gibt die aus der angewandten Forschung und Entwicklung gewonnen Erkenntnisse an die Studierenden der Informatikstudiengänge in Modulen wie "Information Engineering 1 (Information Retrieval)", "Information Engineering 2 (Data Warehousing & Big Data)" und "Datenbanken" weiter. Die Forschungsgruppe engagiert sich auch international im Rahmen von Forschungsprojekten der EU-Rahmenprogramme. Mit unseren Kompetenzen tragen wir zum interdisziplinären Forschungsfeld "Data Science" bei.
Forschungsthemen
Die Forschungsgruppe Intelligent Information Systems erarbeitet Lösungen für eine sich wandelnde, datengetriebene Welt. Sie betreibt Forschung an der Schnittstelle zwischen Datenbanken (DB), Information Retrieval (IR), Data Engineering (DE), Natural Language Processing (NLP) und Machine Learning (ML).
Die Forschungsgruppe bedient zwei hauptsächliche Forschungslinien:
Big Data und Nano Data
Wir lösen herausfordernde Probleme auf Datenbeständen im Bereich von sehr klein (Nano Data) bis zu sehr gross (Big Data), wobei sich die Natur der Probleme beim Wechsel der Grössenordnungen drastisch ändert.
Aktuelle Forschung:
- Information Retrieval für Nano und Small Data
- Machine Learning für Queryoptimierung
- Künstliche Intelligenz für Datenintegration und -bereinigung
- Quntumdatenbanken und Quantum Machine Learning
Data Understanding
Auf dem Weg zu «intelligenten» Lösungen zu datengetriebenen Problemen müssen klassische Informationssysteme Daten auf einer neuen Ebene verarbeiten, und mithin interpretieren, um Information zu gewinnen. Sowohl strukturierte wie auch unstrukturierte Daten müssen nicht nur auf einer mechanisch, sondern vielmehr auf einer semantischen Ebene verarbeitet werden – zum Beispiel mittels Methoden des Natural Language Processings/Understandings. Ziel ist die Verknüpfung der Daten in Graphenstrukturen, oder ihre Bereitstellung mittels semantischer Suche.
Aktuelle Forschung:
- Natural Language Interfaces für Datenbanken
- Semantische Suche auf Entitäten
- Knowledge Graph Construction
- Question Answering auf Knowledge-Graphen
- Stream Analytics und Event Detection
- Information Retrieval Evaluation
Projekte
Leider kann hier momentan keine Liste der Projekte angezeigt werden. Bis die Liste wieder verfügbar ist, kann die Projektsuche auf der Dachseite der ZHAW genutzt werden.
Publikationen
-
Brunner, Ursin; Stockinger, Kurt,
2021.
ValueNet : a natural language-to-SQL system that learns from database information [Paper].
In:
Proceedings of the 37th ICDE.
37th International Conference on Data Engineering (ICDE), Chania, Greece, 19-22 April 2021.
IEEE.
S. 2177-2182.
Verfügbar unter: https://doi.org/10.1109/ICDE51399.2021.00220
-
Delaux, Alexandre; Saint Aubert, Jean‐Baptiste; Ramanoël, Stephen; Bécu, Marcia; Gehrke, Lukas; Klug, Marius; Chavarriaga, Ricardo; Sahel, José‐Alain; Gramann, Klaus; Arleo, Angelo,
2021.
Mobile brain/body imaging of landmark‐based navigation with high‐density EEG.
European Journal of Neuroscience.
54(12), S. 8256-8282.
Verfügbar unter: https://doi.org/10.1111/ejn.15190
-
Amirian, Mohammadreza; Tuggener, Lukas; Chavarriaga, Ricardo; Satyawan, Yvan Putra; Schilling, Frank-Peter; Schwenker, Friedhelm; Stadelmann, Thilo,
2021.
Two to trust : AutoML for safe modelling and interpretable deep learning for robustness [Paper].
In:
Postproceedings of the 1st TAILOR Workshop on Trustworthy AI at ECAI 2020.
1st TAILOR Workshop on Trustworthy AI at ECAI 2020, Santiago de Compostela, Spain, 29-30 August 2020.
Springer.
Verfügbar unter: https://doi.org/10.21256/zhaw-22061
-
Bontempi, Gianluca; Chavarriaga, Ricardo; De Canck, Hans; Girardi, Emanuela; Hoos, Holger; Kilbane-Dawe, Iarla; Ball, Tonio; Nowé, Ann; Sousa, Jose; Bacciu, Davide; Aldinucci, Marco; De Domenico, Manlio; Saffiotti, Alessandro; Maratea, Marco,
2021.
The CLAIRE COVID-19 initiative : approach, experiences and recommendations.
Ethics and Information Technology.
23(Suppl 1), S. S127-S133.
Verfügbar unter: https://doi.org/10.1007/s10676-020-09567-7
-
Liang, Shiqi; Stockinger, Kurt; de Farias, Tarcisio Mendes; Anisimova, Maria; Gil, Manuel,
2021.
Querying knowledge graphs in natural language.
Journal of Big Data.
8(3).
Verfügbar unter: https://doi.org/10.1186/s40537-020-00383-w