Natural Language Processing Group
«Wir verbinden Grundlagenforschung mit industriellen Anwendungen, um neue und innovative Produkte und Dienstleistungen hervorzubringen, während wir gleichzeitig die ethischen und gesellschaftlichen Dimensionen erforschen.»
Expertise
- Textanalytik
- Dialogsysteme
- Sprachverarbeitung
Das NLP-Forschungsteam entwickelt Technologien zur Analyse, zum Verständnis und zur Generierung von Sprache und Texten. Wir verbinden Methoden aus der Linguistik, dem Natural Language Processing (NLP) und der künstlichen Intelligenz, um eine natürlichsprachliche Kommunikation zwischen Mensch und Maschine zu ermöglichen. In unserer Forschung arbeiten wir an Themen wie der Textklassifikation (z. B. Sentiment-Analyse), Chatbots und Dialogsystemen, Textzusammenfassung, Speech-to-Text, Sprecherunterscheidung sowie der Generierung von natürlicher Sprache (Natural Language Generation). Die schweizerdeutsche Sprach- und Textverarbeitung bildet einen besonderen Schwerpunkt der Gruppe.
Angebote
- Einblick: Keynotes, Trainings
- KI-Beratung: Workshops, Expertenunterstützung, Beratung, Technikfolgenabschätzung
- Forschung und Entwicklung: kleine bis grosse Gemeinschaftsprojekte, Drittmittelforschung, studentische Projekte, praxiserprobte Prototypen
Team
Projekte
Leider kann hier momentan keine Liste der Projekte angezeigt werden. Bis die Liste wieder verfügbar ist, kann die Projektsuche auf der Dachseite der ZHAW genutzt werden.
Publikationen
-
Benites, Fernando; Tuggener, Don; Hürlimann, Manuela; Cieliebak, Mark; Vogel, Manfred, Hrsg.,
2021.
Proceedings of the Swiss Text Analytics Conference 2021.
6th Swiss Text Analytics Conference – SwissText 2021, Online, 14-16 June 2021.
CEUR Workshop Proceedings.
.
Verfügbar unter: http://ceur-ws.org/Vol-2957/
-
Tuggener, Don; Aghaebrahimian, Ahmad,
2021.
The Sentence End and Punctuation Prediction in NLG text (SEPP-NLG) shared task 2021 [Paper].
In:
Proceedings of the Swiss Text Analytics Conference 2021.
Swiss Text Analytics Conference – SwissText 2021, Online, 14-16 June 2021.
CEUR Workshop Proceedings.
Verfügbar unter: https://doi.org/10.21256/zhaw-23258
-
Amirian, Mohammadreza; Tuggener, Lukas; Chavarriaga, Ricardo; Satyawan, Yvan Putra; Schilling, Frank-Peter; Schwenker, Friedhelm; Stadelmann, Thilo,
2021.
Two to trust : AutoML for safe modelling and interpretable deep learning for robustness [Paper].
In:
Postproceedings of the 1st TAILOR Workshop on Trustworthy AI at ECAI 2020.
1st TAILOR Workshop on Trustworthy AI at ECAI 2020, Santiago de Compostela, Spain, 29-30 August 2020.
Springer.
Verfügbar unter: https://doi.org/10.21256/zhaw-22061
-
2021.
Improving a semantic parser through user interaction.
Winterthur:
ZHAW Zürcher Hochschule für Angewandte Wissenschaften.
Verfügbar unter: https://doi.org/10.21256/zhaw-22938
-
Tuggener, Lukas; Satyawan, Yvan Putra; Pacha, Alexander; Schmidhuber, Jürgen; Stadelmann, Thilo,
2021.
The DeepScoresV2 dataset and benchmark for music object detection [Paper].
In:
2020 25th International Conference on Pattern Recognition (ICPR).
25th International Conference on Pattern Recognition 2020 (ICPR’20), Online, 10-15 January 2021.
IEEE.
S. 9188-9195.
Verfügbar unter: https://doi.org/10.1109/ICPR48806.2021.9412290